A new generalized volatility proxy via the stochastic volatility model

被引:1
|
作者
Kim, Jong-Min [1 ]
Jung, Hojin [2 ]
Qin, Li [1 ]
机构
[1] Univ Minnesota, Div Sci & Math, Stat Discipline, Morris, MN 56267 USA
[2] Henan Univ, Sch Econ, Kaifeng 475001, Henan, Peoples R China
关键词
Volatility; stochastic volatility; relative bias; mean square error;
D O I
10.1080/00036846.2016.1237751
中图分类号
F [经济];
学科分类号
02 ;
摘要
This article proposes power transformation of absolute returns as a new proxy of latent volatility in the stochastic model. We generalize absolute returns as a proxy for volatility in that we place no restriction on the power of absolute returns. An empirical investigation on the bias, mean square error and relative bias is carried out for the proposed proxy. Simulation results show that the new estimator exhibiting negligible bias appears to be more efficient than the unbiased estimator with high variance.
引用
收藏
页码:2259 / 2268
页数:10
相关论文
共 50 条
  • [1] On the test of the volatility proxy model
    Deng, Chunliang
    Zhang, Xingfa
    Li, Yuan
    Song, Zefang
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (12) : 7390 - 7403
  • [2] Optimal Volatility Dependent Derivatives in the Stochastic Volatility Model
    Dyachenko, Artem
    Rieger, Marc Oliver
    JOURNAL OF DERIVATIVES, 2021, 28 (04): : 24 - 44
  • [3] Estimation of the volatility diffusion coefficient for a stochastic volatility model
    Gloter, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (03): : 243 - 248
  • [4] On the Stochastic Volatility in the Generalized Black-Scholes-Merton Model
    Ivanov, Roman V.
    RISKS, 2023, 11 (06)
  • [5] A VOLATILITY-OF-VOLATILITY EXPANSION OF THE OPTION PRICES IN THE SABR STOCHASTIC VOLATILITY MODEL
    Grishchenko, Olesya
    Han, Xiao
    Nistor, Victor
    INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2020, 23 (03)
  • [6] Estimating Stochastic Volatility under the Assumption of Stochastic Volatility of Volatility
    Alghalith, Moawia
    Floros, Christos
    Gkillas, Konstantinos
    RISKS, 2020, 8 (02)
  • [7] Fractional stochastic volatility model
    Shi, Shuping
    Liu, Xiaobin
    Yu, Jun
    JOURNAL OF TIME SERIES ANALYSIS, 2025, 46 (02) : 378 - 397
  • [8] On leverage in a stochastic volatility model
    Yu, J
    JOURNAL OF ECONOMETRICS, 2005, 127 (02) : 165 - 178
  • [9] The Jacobi stochastic volatility model
    Ackerer, Damien
    Filipovic, Damir
    Pulido, Sergio
    FINANCE AND STOCHASTICS, 2018, 22 (03) : 667 - 700
  • [10] A Neural Stochastic Volatility Model
    Luo, Rui
    Zhang, Weinan
    Xu, Xiaojun
    Wang, Jun
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 6401 - 6408