Sedimentation of a colloidal monolayer down an inclined plane

被引:1
|
作者
Sprinkle, Brennan [1 ]
Wilken, Sam [2 ,3 ]
Karapetyan, Shake [3 ,4 ]
Tanaka, Michio [5 ,6 ]
Chen, Zhe [1 ]
Cruise, Joseph R. [1 ,6 ]
Delmotte, Blaise [7 ]
Driscoll, Michelle M. [8 ]
Chaikin, Paul [3 ]
Donev, Aleksandar [1 ]
机构
[1] NYU, Courant Inst Math Sci, 251 Mercer St, New York, NY 10012 USA
[2] Univ Calif Santa Barbara, Mat Dept, Santa Barbara, CA 93106 USA
[3] NYU, Dept Phys, Ctr Soft Matter Res, 4 Washington Pl, New York, NY 10003 USA
[4] New York Univ Abu Dhabi, Res Ctr Stabil Instabil & Turbulence, Abu Dhabi, U Arab Emirates
[5] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA
[6] Washington Univ, Dept Phys, St Louis, MO 63130 USA
[7] Inst Polytech Paris, Ecole Polytech, CNRS, LadHyX, F-91120 Palaiseau, France
[8] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevFluids.6.034202
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the driven collective dynamics of a colloidal monolayer sedimenting down an inclined plane. The action of the gravity force parallel to the bottom wall creates a flow around each colloid, and the hydrodynamic interactions among the colloids accelerate the sedimentation as the local density increases. This leads to the creation of a universal "triangular" inhomogeneous density profile, with a traveling density shock at the leading front moving in the downhill direction. Unlike density shocks in a colloidal monolayer driven by applied torques rather than forces [Phys. Rev. Fluids 2, 092301(R) (2017)], the density front during sedimentation remains stable over long periods of time even though it develops a roughness on the order of tens of particle diameters. Through experimental measurements and particle-based computer simulations, we find that the Burgers equation can model the density profile along the sedimentation direction as a function of time remarkably well, with a modest improvement if the nonlinear conservation law accounts for the sublinear dependence of the collective sedimentation velocity on density.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Effect of surfactant on the stability of film flow down an inclined plane
    Blyth, MG
    Pozrikidis, C
    JOURNAL OF FLUID MECHANICS, 2004, 521 : 241 - 250
  • [42] THE ANALYSIS OF STABILITY OF BINGHAM FLUID FLOWIGN DOWN AN INCLINED PLANE
    王培光
    王振东
    AppliedMathematicsandMechanics(EnglishEdition), 1995, (05) : 1013 - 1018
  • [43] Dense flows of bidisperse assemblies of disks down an inclined plane
    Rognon, Pierre G.
    Roux, Jean-Noel
    Naaim, Mohamed
    Chevoir, Francois
    PHYSICS OF FLUIDS, 2007, 19 (05)
  • [44] Experimental study of collisional granular flows down an inclined plane
    Azanza, E
    Chevoir, F
    Moucheront, P
    JOURNAL OF FLUID MECHANICS, 1999, 400 : 199 - 227
  • [45] Granular flow down an inclined plane: Bagnold scaling and rheology
    Silbert, L.E.
    Ertas¸, D.
    Grest, G.S.
    Halsey, T.C.
    Levine, D.
    Plimpton, S.J.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2001, 64 (5 I): : 1 - 051302
  • [46] Instability of a liquid film flowing down an inclined wavy plane
    Wierschem, A
    Aksel, N
    PHYSICA D-NONLINEAR PHENOMENA, 2003, 186 (3-4) : 221 - 237
  • [47] VISCOUS FLOWS DOWN AN INCLINED PLANE - INSTABILITY AND FINGER FORMATION
    SCHWARTZ, LW
    PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1989, 1 (03): : 443 - 445
  • [49] SIMILARITY SOLUTION FOR SLOW VISCOUS FLOW DOWN AN INCLINED PLANE
    SMITH, PC
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1972, 53 (04): : 418 - +
  • [50] Shallow flow of an inhomogeneous incompressible fluid down an inclined plane
    Fusi, Lorenzo
    THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2019, 33 (02) : 215 - 234