Sedimentation of a colloidal monolayer down an inclined plane

被引:1
|
作者
Sprinkle, Brennan [1 ]
Wilken, Sam [2 ,3 ]
Karapetyan, Shake [3 ,4 ]
Tanaka, Michio [5 ,6 ]
Chen, Zhe [1 ]
Cruise, Joseph R. [1 ,6 ]
Delmotte, Blaise [7 ]
Driscoll, Michelle M. [8 ]
Chaikin, Paul [3 ]
Donev, Aleksandar [1 ]
机构
[1] NYU, Courant Inst Math Sci, 251 Mercer St, New York, NY 10012 USA
[2] Univ Calif Santa Barbara, Mat Dept, Santa Barbara, CA 93106 USA
[3] NYU, Dept Phys, Ctr Soft Matter Res, 4 Washington Pl, New York, NY 10003 USA
[4] New York Univ Abu Dhabi, Res Ctr Stabil Instabil & Turbulence, Abu Dhabi, U Arab Emirates
[5] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA
[6] Washington Univ, Dept Phys, St Louis, MO 63130 USA
[7] Inst Polytech Paris, Ecole Polytech, CNRS, LadHyX, F-91120 Palaiseau, France
[8] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevFluids.6.034202
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the driven collective dynamics of a colloidal monolayer sedimenting down an inclined plane. The action of the gravity force parallel to the bottom wall creates a flow around each colloid, and the hydrodynamic interactions among the colloids accelerate the sedimentation as the local density increases. This leads to the creation of a universal "triangular" inhomogeneous density profile, with a traveling density shock at the leading front moving in the downhill direction. Unlike density shocks in a colloidal monolayer driven by applied torques rather than forces [Phys. Rev. Fluids 2, 092301(R) (2017)], the density front during sedimentation remains stable over long periods of time even though it develops a roughness on the order of tens of particle diameters. Through experimental measurements and particle-based computer simulations, we find that the Burgers equation can model the density profile along the sedimentation direction as a function of time remarkably well, with a modest improvement if the nonlinear conservation law accounts for the sublinear dependence of the collective sedimentation velocity on density.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] ON THE NAVIER-STOKES FLOW DOWN AN INCLINED PLANE
    TERAMOTO, Y
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1992, 32 (03): : 593 - 619
  • [22] STABILITY OF A LAYER OF LIQUID FLOWING DOWN AN INCLINED PLANE
    DEBRUIN, GJ
    JOURNAL OF ENGINEERING MATHEMATICS, 1974, 8 (03) : 259 - 270
  • [23] FLOW OF A MICROPOLAR LIQUID LAYER DOWN AN INCLINED PLANE
    WILLSON, AJ
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1968, 64 : 513 - &
  • [24] Motion of a sphere down an inclined plane in a viscous flow
    A. V. Bazilevskii
    A. N. Rozhkov
    Fluid Dynamics, 2009, 44 : 566 - 576
  • [25] Cessation of a dense granular flow down an inclined plane
    Bharathraj, S.
    Kumaran, V
    PHYSICAL REVIEW FLUIDS, 2019, 4 (02):
  • [26] Avalanches of concentrated granular suspensions down an inclined plane
    Andreini, N.
    Wiederseiner, S.
    Rentschler, M.
    Ancey, C.
    XVTH INTERNATIONAL CONGRESS ON RHEOLOGY - THE SOCIETY OF RHEOLOGY 80TH ANNUAL MEETING, PTS 1 AND 2, 2008, 1027 : 1045 - 1047
  • [27] SLOW VISCOUS FLOW DOWN A WAVY INCLINED PLANE
    SIDDAPPA, B
    CURRENT SCIENCE, 1972, 41 (09): : 324 - &
  • [28] Stability of the viscoelastic film flow down an inclined plane
    Tihon, J
    Wein, O
    PROGRESS AND TRENDS IN RHEOLOGY V, 1998, : 165 - 166
  • [29] Meandering of jets flowing down over an inclined plane
    I. Yu. Makarikhin
    O. M. Makarikhina
    S. O. Makarov
    K. A. Rybkin
    Fluid Dynamics, 2010, 45 : 545 - 551
  • [30] Numerical simulation of Stokes flow down an inclined plane
    Gwynllyw, DR
    Peregrine, DH
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1996, 452 (1946): : 543 - 565