On Maximizing the Difference Between an Approximately Submodular Function and a Linear Function Subject to a Matroid Constraint

被引:2
|
作者
Wang, Yijing [1 ]
Xu, Yicheng [2 ,3 ]
Yang, Xiaoguang [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
[3] Guangxi Key Lab Cryptog & Informat Secur, Guilin 541004, Peoples R China
关键词
Approximately submodular; Matroid constraint; Bicriteria algorithm; Massive data; OPTIMIZATION;
D O I
10.1007/978-3-030-92681-6_7
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we investigate the problem of maximizing the difference between an approximately submodular function and a non-negative linear function subject to a matroid constraint. This model has widespread applications in real life, such as the team formation problem in labor market and the assortment optimization in sales market. We provide a bicriteria approximation algorithm with bifactor ratio (gamma/1+gamma, 1), where gamma is an element of (0, 1] is a parameter to characterize the approximate submodularity. Our result extends Ene's recent work on maximizing the difference between a monotone submodular function and a linear function. Also, a generalized version of the proposed algorithm is capable to deal with huge volume data set.
引用
收藏
页码:75 / 85
页数:11
相关论文
共 50 条
  • [41] Maximizing DR-submodular plus supermodular functions on the integer lattice subject to a cardinality constraint
    Zhang, Zhenning
    Du, Donglei
    Jiang, Yanjun
    Wu, Chenchen
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2021, 80 (03) : 595 - 616
  • [42] An Efficient Branch-and-Cut Algorithm for Approximately Submodular Function Maximization
    Uematsu, Naoya
    Umetani, Shunji
    Kawahara, Yoshinobu
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), 2019, : 3160 - 3167
  • [43] On streaming algorithms for maximizing a supermodular function plus a MDR-submodular function on the integer lattice
    Jingjing Tan
    Yicheng Xu
    Dongmei Zhang
    Xiaoqing Zhang
    [J]. Journal of Combinatorial Optimization, 2023, 45
  • [44] On streaming algorithms for maximizing a supermodular function plus a MDR-submodular function on the integer lattice
    Tan, Jingjing
    Xu, Yicheng
    Zhang, Dongmei
    Zhang, Xiaoqing
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2023, 45 (02)
  • [45] ON THE BEHAVIOR OF THE DOUGLAS RACHFORD ALGORITHM FOR MINIMIZING A CONVEX FUNCTION SUBJECT TO A LINEAR CONSTRAINT
    Bauschke, Heinz H.
    Moursi, Walaa M.
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2020, 30 (03) : 2559 - 2576
  • [46] Maximizing a submodular function by integer programming: Polyhedral results for the quadratic case
    Lee, H
    Nemhauser, GL
    Wang, YH
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1996, 94 (01) : 154 - 166
  • [47] APPROXIMABILITY OF MONOTONE SUBMODULAR FUNCTION MAXIMIZATION UNDER CARDINALITY AND MATROID CONSTRAINTS IN THE STREAMING MODEL
    Huang, Chien-Chung
    Kakimura, Naonori
    Mauras, Simon
    Yoshida, Yuichi
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2022, 36 (01) : 355 - 382
  • [48] MAXIMIZING A k-SUBMODULAR FUNCTION WITH p-SYSTEM CONSTRAINTS
    Ye, Hanlu
    Li, Min
    Zhou, Yang
    Liu, Qian
    [J]. MATHEMATICAL FOUNDATIONS OF COMPUTING, 2024,
  • [49] THE LINEAR FUNCTION MAXIMIZING INTRACLASS CORRELATION
    SMITH, CAB
    [J]. ANNALS OF EUGENICS, 1953, 17 (04): : 286 - 292
  • [50] Randomized Algorithms for Submodular Function Maximization with a k-System Constraint
    Cui, Shuang
    Han, Kai
    Zhu, Tianshuai
    Tang, Jing
    Wu, Benwei
    Huang, He
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139