On Maximizing the Difference Between an Approximately Submodular Function and a Linear Function Subject to a Matroid Constraint

被引:2
|
作者
Wang, Yijing [1 ]
Xu, Yicheng [2 ,3 ]
Yang, Xiaoguang [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
[3] Guangxi Key Lab Cryptog & Informat Secur, Guilin 541004, Peoples R China
关键词
Approximately submodular; Matroid constraint; Bicriteria algorithm; Massive data; OPTIMIZATION;
D O I
10.1007/978-3-030-92681-6_7
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we investigate the problem of maximizing the difference between an approximately submodular function and a non-negative linear function subject to a matroid constraint. This model has widespread applications in real life, such as the team formation problem in labor market and the assortment optimization in sales market. We provide a bicriteria approximation algorithm with bifactor ratio (gamma/1+gamma, 1), where gamma is an element of (0, 1] is a parameter to characterize the approximate submodularity. Our result extends Ene's recent work on maximizing the difference between a monotone submodular function and a linear function. Also, a generalized version of the proposed algorithm is capable to deal with huge volume data set.
引用
收藏
页码:75 / 85
页数:11
相关论文
共 50 条
  • [21] Maximizing Submodular Set Function with Connectivity Constraint: Theory and Application to Networks
    Kuo, Tung-Wei
    Lin, Kate Ching-Ju
    Tsai, Ming-Jer
    [J]. 2013 PROCEEDINGS IEEE INFOCOM, 2013, : 1977 - 1985
  • [22] On maximizing a monotone k-submodular function under a knapsack constraint
    Tang, Zhongzheng
    Wang, Chenhao
    Chan, Hau
    [J]. OPERATIONS RESEARCH LETTERS, 2022, 50 (01) : 28 - 31
  • [23] Maximizing Submodular plus Supermodular Functions Subject to a Fairness Constraint
    Zhang, Zhenning
    Meng, Kaiqiao
    Du, Donglei
    Zhou, Yang
    [J]. TSINGHUA SCIENCE AND TECHNOLOGY, 2024, 29 (01): : 46 - 55
  • [24] A new greedy strategy for maximizing monotone submodular function under a cardinality constraint
    Lu, Cheng
    Yang, Wenguo
    Gao, Suixiang
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2022, 83 (02) : 235 - 247
  • [25] A new greedy strategy for maximizing monotone submodular function under a cardinality constraint
    Cheng Lu
    Wenguo Yang
    Suixiang Gao
    [J]. Journal of Global Optimization, 2022, 83 : 235 - 247
  • [26] Maximizing a Submodular Function with Viability Constraints
    Dvorak, Wolfgang
    Henzinger, Monika
    Williamson, David P.
    [J]. ALGORITHMICA, 2017, 77 (01) : 152 - 172
  • [27] Maximizing a Submodular Function with Viability Constraints
    Dvorak, Wolfgang
    Henzinger, Monika
    Williamson, David P.
    [J]. ALGORITHMS - ESA 2013, 2013, 8125 : 409 - 420
  • [28] The Adaptive Complexity of Maximizing a Submodular Function
    Balkanski, Eric
    Singer, Yaron
    [J]. STOC'18: PROCEEDINGS OF THE 50TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2018, : 1138 - 1151
  • [29] Maximizing a Submodular Function with Viability Constraints
    Wolfgang Dvořák
    Monika Henzinger
    David P. Williamson
    [J]. Algorithmica, 2017, 77 : 152 - 172
  • [30] An accelerated deterministic algorithm for maximizing monotone submodular minus modular function with cardinality constraint
    Gong, Shufang
    Liu, Bin
    Fang, Qizhi
    [J]. THEORETICAL COMPUTER SCIENCE, 2024, 1016