An efficient network for category-level 6D object pose estimation

被引:0
|
作者
Sun, Shantong [1 ]
Liu, Rongke [1 ]
Sun, Shuqiao [1 ]
Yang, Xinxin [1 ]
Lu, Guangshan [2 ]
机构
[1] Beihang Univ, Dept Elect & Informat Engn, Beijing 100191, Peoples R China
[2] Aviation Ind Corp China, Beijing 100009, Peoples R China
基金
中国国家自然科学基金;
关键词
Category-level; Object pose estimation; External sharing unit; Internal sharing unit;
D O I
10.1007/s11760-021-01900-x
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Most category-level object pose estimation methods are multi-tasking, including instance segmentation, Normalized Object Coordinate Space (NOCS) map estimation and classification. However, previous approaches overlooked the connection between multiple tasks. In this work, we propose an efficient network to make better use of the complementarity between different tasks. Specifically, we propose an external sharing unit (ESU) to promote instance segmentation and NOCS map estimation. In addition, we propose an internal sharing unit (ISU) to improve the NOCS map estimation. The NOCS map head has three branches. And the estimated coordinates of each branch have strong correlation. Extensive experiments on the CAMERA and REAL dataset demonstrate the effectiveness of joint optimization in multi-tasking category-level object estimation. Experimental results also show that the proposed method can improve not only accuracy but also efficiency on several benchmarks.
引用
下载
收藏
页码:1643 / 1651
页数:9
相关论文
共 50 条
  • [31] VI-Net: Boosting Category-level 6D Object Pose Estimation via Learning Decoupled Rotations on the Spherical Representations
    Lin, Jiehong
    Wei, Zewei
    Zhang, Yabin
    Jia, Kui
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 13955 - 13965
  • [32] A Visual Navigation Perspective for Category-Level Object Pose Estimation
    Guo, Jiaxin
    Zhong, Fangxun
    Xiong, Rong
    Liu, Yunhui
    Wang, Yue
    Liao, Yiyi
    COMPUTER VISION - ECCV 2022, PT VI, 2022, 13666 : 123 - 141
  • [33] iCaps: Iterative Category-Level Object Pose and Shape Estimation
    Deng, Xinke
    Geng, Junyi
    Bretl, Timothy
    Xiang, Yu
    Fox, Dieter
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02): : 1784 - 1791
  • [34] Zero-Shot Category-Level Object Pose Estimation
    Goodwin, Walter
    Vaze, Sagar
    Havoutis, Ioannis
    Posner, Ingmar
    COMPUTER VISION, ECCV 2022, PT XXXIX, 2022, 13699 : 516 - 532
  • [35] Sca-pose: category-level 6D pose estimation with adaptive shape prior based on CNN and graph convolution
    Guoyu Zuo
    Shan Yu
    Shuangyue Yu
    Hong Liu
    Min Zhao
    Intelligent Service Robotics, 2025, 18 (2) : 351 - 361
  • [36] Category-Level Metric Scale Object Shape and Pose Estimation
    Lee, Taeyeop
    Lee, Byeong-Uk
    Kim, Myungchul
    Kweon, I. S.
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (04) : 8575 - 8582
  • [37] Category-Level 6-D Object Pose Estimation With Shape Deformation for Robotic Grasp Detection
    Yu, Sheng
    Zhai, Di-Hua
    Guan, Yuyin
    Xia, Yuanqing
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, : 1 - 15
  • [38] Corr-Track: Category-Level 6D Pose Tracking with Soft-Correspondence Matrix Estimation
    Cao, Xin
    Li, Jia
    Zhao, Panpan
    Li, Jiachen
    Qin, Xueying
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2024, 30 (05) : 2173 - 2183
  • [39] CatTrack: Single-Stage Category-Level 6D Object Pose Tracking via Convolution and Vision Transformer
    Yu, Sheng
    Zhai, Di-Hua
    Xia, Yuanqing
    Li, Dong
    Zhao, Shiqi
    IEEE Transactions on Multimedia, 2024, 26 : 1665 - 1680
  • [40] Object Level Depth Reconstruction for Category Level 6D Object Pose Estimation from Monocular RGB Image
    Fan, Zhaoxin
    Song, Zhenbo
    Xu, Jian
    Wang, Zhicheng
    Wu, Kejian
    Liu, Hongyan
    He, Jun
    COMPUTER VISION - ECCV 2022, PT II, 2022, 13662 : 220 - 236