Coalescence and sintering of Pt nanoparticles: in situ observation by aberration-corrected HAADF STEM

被引:136
|
作者
Asoro, M. A. [1 ]
Kovar, D. [1 ,2 ]
Shao-Horn, Y. [3 ,4 ]
Allard, L. F. [5 ]
Ferreira, P. J. [1 ,2 ]
机构
[1] Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA
[2] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA
[3] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[4] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[5] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA
基金
美国国家科学基金会;
关键词
SURFACE-DIFFUSION; PLATINUM; TEMPERATURE; INSTABILITY;
D O I
10.1088/0957-4484/21/2/025701
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
An aberration-corrected JEOL 2200FS scanning-transmission electron microscope (STEM), equipped with a high-angle annular dark-field detector (HAADF), is used to monitor the coalescence and sintering of Pt nanoparticles with an average diameter of 2.8 nm. This in situ STEM capability is combined with an analysis methodology that together allows direct measurements of mass transport phenomena that are important in understanding how particle size influences coalescence and sintering at the nanoscale. To demonstrate the feasibility of this methodology, the surface diffusivity is determined from measurements obtained from STEM images acquired during the initial stages of sintering. The measured surface diffusivities are in reasonable agreement with measurements made on the surface of nanoparticles, using other techniques. In addition, the grain boundary mobility is determined from measurements made during the latter stages of sintering.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] A Bloch wave analysis of optical sectioning in aberration-corrected STEM
    Cosgriff, E. C.
    Nellist, P. D.
    ULTRAMICROSCOPY, 2007, 107 (08) : 626 - 634
  • [42] Quantitative Characterisation of Surface Defects and Composition on PtRu Nanoparticles Using Aberration-Corrected TEM/STEM
    Chang, L. Y.
    Lazar, S.
    Baranova, E. A.
    Bock, C.
    Botton, G. A.
    MICROSCOPY AND MICROANALYSIS, 2009, 15 : 1416 - 1417
  • [43] Quantitative techniques for aberration corrected HAADF STEM of nano-materials
    E, H.
    Nellist, P. D.
    D'Alfonso, A. J.
    Allen, L. J.
    ELECTRON MICROSCOPY AND ANALYSIS GROUP CONFERENCE 2011 (EMAG 2011), 2012, 371
  • [44] In Situ Observation of the Motion of Platinum and Gold Single Atoms on Graphene Using Aberration-Corrected Electron Microscopy
    Suzuta, Akio
    Yamazaki, Kenji
    Gohara, Kazutoshi
    Uchida, Tsutomu
    JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (30): : 12780 - 12789
  • [45] Prospects for single atom location and identification with aberration-corrected STEM
    Lupini, AR
    Varela, M
    Borisevich, AY
    Peng, Y
    Pennycook, SJ
    MICROSCOPY OF SEMICONDUCTING MATERIALS 2003, 2003, (180): : 523 - 532
  • [46] Aberration-corrected STEM for atomic-resolution imaging and analysis
    Krivanek, O. L.
    Lovejoy, T. C.
    Dellby, N.
    JOURNAL OF MICROSCOPY, 2015, 259 (03) : 165 - 172
  • [47] ABERRATION-CORRECTED STEM: TOWARDS THE ULTIMATE RESOLUTION FOR IMAGING AND ANALYSIS
    Pennycook, S. J.
    Lupini, A. R.
    Krivanek, L.
    Delby, N.
    Nellist, P. D.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2002, 58 : C252 - C252
  • [48] Aberration-corrected imaging of active sites on industrial catalyst nanoparticles
    Gontard, Lionel Cervera
    Chang, Lan-Yun
    Hetherington, Crispin J. D.
    Kirkland, Angus I.
    Ozkaya, Dogan
    Dunin-Borkowski, Rafal E.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (20) : 3683 - 3685
  • [49] A 'jump-to-coalescence' mechanism during nanoparticle growth revealed by in situ aberration-corrected transmission electron microscopy observations
    Wan Neng
    Lei Shuang-ying
    Xu Jun
    Martini, Matteo
    NANOTECHNOLOGY, 2016, 27 (20)
  • [50] Towards single atom column EELS in an aberration-corrected STEM
    Pennycook, SJ
    Rafferty, B
    Duscher, G
    MICROBEAM ANALYSIS 2000, PROCEEDINGS, 2000, (165): : 243 - 244