Orthogonal designs and generalized Fourier-Walsh transforms

被引:0
|
作者
Hammer, J [1 ]
机构
[1] UNIV SYDNEY,SCH MATH,SYDNEY,NSW 2006,AUSTRALIA
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Walsh transform matrix is an Hadamard matrix in which the rows are permuted to be in a specific order. In this note it is shown that certain generalized Walsh transforms are orthogonal designs which, in turn, are generalizations of Hadamard matrices. We also show that a Fast Fourier Transform algorithm for an orthogonal design transform is structurally equivalent to that of the corresponding Walsh transform permitting more efficient computational algorithms for certain generalized Fourier-Walsh transforms.
引用
收藏
页码:113 / 125
页数:13
相关论文
共 50 条
  • [31] FOURIER-TRANSFORMS OF WALSH-FUNCTIONS
    ROBINSON, GS
    IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 1974, EM16 (03) : 183 - 185
  • [32] CONVERGENCE OF FOURIER-WALSH SERIES IN L-1 METRICS AND ALMOST EVERYWHERE
    GRIGORYAN, MG
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1990, (11): : 9 - 18
  • [33] Lizorkin-Triebel spaces and the strong summability of multiple Fourier-Walsh series
    Sautbekova, M. S.
    Bokayev, N. A.
    Igenberlina, A. E.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2013, 70 (02): : 145 - 151
  • [34] Generalized orthogonal designs
    Georgiou, S
    Koukouvinos, C
    Seberry, J
    ARS COMBINATORIA, 2004, 71 : 33 - 47
  • [35] ON DIVERGENCE OF FOURIER-WALSH SERIES OF BOUNDED-FUNCTIONS ON SETS OF MEASURE ZERO
    BUGADZE, VM
    RUSSIAN ACADEMY OF SCIENCES SBORNIK MATHEMATICS, 1995, 82 (02) : 365 - 372
  • [36] Integrability of the sum of absolute values of blocks of the Fourier-Walsh series for functions of bounded variation
    Malykhin, Yu. V.
    Telyakovskii, S. A.
    Kholshchevnikova, N. N.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2015, 290 (01) : 306 - 317
  • [37] FOURIER TRANSFORMS OF ORTHOGONAL POLYNOMIALS ON THE CONE
    Karaman, RabıA Aktaş
    Area, Iván
    arXiv,
  • [38] Generalized fractional Fourier transforms
    J Phys A Math Gen, 3 (973):
  • [39] Sparse generalized Fourier transforms
    Ahlander, Krister
    Henriksson, Daniel
    BIT NUMERICAL MATHEMATICS, 2007, 47 (01) : 213 - 237
  • [40] Generalized Fourier transforms Fk,a
    Ben Said, Salem
    Kobayashi, Toshiyuki
    Orsted, Bent
    COMPTES RENDUS MATHEMATIQUE, 2009, 347 (19-20) : 1119 - 1124