Comonotonicity, correlation order and premium principles

被引:78
|
作者
Wang, S
Dhaene, J
机构
[1] Katholieke Univ Leuven, Dept Toegepaste Econ Wetenschappen, B-3000 Louvain, Belgium
[2] Univ Waterloo, Dept Stat & Actuarial Sci, Waterloo, ON N2L 3G1, Canada
来源
INSURANCE MATHEMATICS & ECONOMICS | 1998年 / 22卷 / 03期
关键词
dependency; correlation order; comonotonicity; stop-loss premium; premium principle;
D O I
10.1016/S0167-6687(97)00040-1
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this paper, we investigate the notion of dependency between risks and its effect on the related stop-loss premiums. The concept of comonotonicity, being an extreme case of dependency, is discussed in detail. For the bivariate case, it is shown that, given the distributions of the individual risks, comonotonicity leads to maximal stop-loss premiums. Some properties of stop-loss preserving premium principles are considered. A simple proof is given for the sub-additivity property of Wang's premium principle. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:235 / 242
页数:8
相关论文
共 50 条
  • [31] POSITIVE HOMOGENEITY AND MULTIPLICATIVITY OF PREMIUM PRINCIPLES ON POSITIVE RISKS
    SCHMIDT, KD
    INSURANCE MATHEMATICS & ECONOMICS, 1989, 8 (04): : 315 - 319
  • [32] Reinsurance premium principles based on weighted loss functions
    Cai, Jun
    Wang, Ying
    SCANDINAVIAN ACTUARIAL JOURNAL, 2019, 2019 (10) : 903 - 923
  • [33] Stability properties of Haezendonck-Goovaerts premium principles
    Gao, Niushan
    Munari, Cosimo
    Xanthos, Foivos
    INSURANCE MATHEMATICS & ECONOMICS, 2020, 94 : 94 - 99
  • [34] Principles of Correlation
    Parker, Francis W.
    COURSE OF STUDY, 1901, 1 (06): : 506 - 509
  • [36] On iterative premium calculation principles under Cumulative Prospect Theory
    Kaluszka, Marek
    Krzeszowiec, Michal
    INSURANCE MATHEMATICS & ECONOMICS, 2013, 52 (03): : 435 - 440
  • [37] Bowley-optimal convex-loaded premium principles
    Ghossoub, Mario
    Li, Bin
    Shi, Benxuan
    INSURANCE MATHEMATICS & ECONOMICS, 2025, 121 : 157 - 180
  • [38] OPTIMAL DIVIDEND-REINSURANCE WITH TWO TYPES OF PREMIUM PRINCIPLES
    Meng, Hui
    Zhou, Ming
    Siu, Tak Kuen
    PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2016, 30 (02) : 224 - 243
  • [39] OPTIMAL REINSURANCE WITH GENERAL PREMIUM PRINCIPLES BASED ON RVAR AND WVAR
    Hu, Chengyong
    Song, Haiyan
    Wei, Linxiao
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2023, 19 (11) : 8411 - 8428
  • [40] A MARTINGALE APPROACH TO PREMIUM CALCULATION PRINCIPLES IN AN ARBITRAGE FREE MARKET
    DELBAEN, F
    HAEZENDONCK, J
    INSURANCE MATHEMATICS & ECONOMICS, 1989, 8 (04): : 269 - 277