Comonotonicity, correlation order and premium principles

被引:78
|
作者
Wang, S
Dhaene, J
机构
[1] Katholieke Univ Leuven, Dept Toegepaste Econ Wetenschappen, B-3000 Louvain, Belgium
[2] Univ Waterloo, Dept Stat & Actuarial Sci, Waterloo, ON N2L 3G1, Canada
来源
INSURANCE MATHEMATICS & ECONOMICS | 1998年 / 22卷 / 03期
关键词
dependency; correlation order; comonotonicity; stop-loss premium; premium principle;
D O I
10.1016/S0167-6687(97)00040-1
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this paper, we investigate the notion of dependency between risks and its effect on the related stop-loss premiums. The concept of comonotonicity, being an extreme case of dependency, is discussed in detail. For the bivariate case, it is shown that, given the distributions of the individual risks, comonotonicity leads to maximal stop-loss premiums. Some properties of stop-loss preserving premium principles are considered. A simple proof is given for the sub-additivity property of Wang's premium principle. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:235 / 242
页数:8
相关论文
共 50 条
  • [21] A NOTE ON EXPERIENCE RATING, REINSURANCE AND PREMIUM PRINCIPLES
    HURLIMANN, W
    INSURANCE MATHEMATICS & ECONOMICS, 1994, 14 (03): : 197 - 204
  • [22] On the use of capacities in representing premium calculation principles
    Marta Cardin
    Paola Ferretti
    Decisions in Economics and Finance, 2001, 24 (1) : 71 - 77
  • [23] A decomposition of general premium principles into risk and deviation
    Nendel, Max
    Riedel, Frank
    Schmeck, Maren Diane
    INSURANCE MATHEMATICS & ECONOMICS, 2021, 100 : 193 - 209
  • [24] The Correlation Risk Premium: International Evidence
    Faria, Goncalo
    Kosowski, Robert
    Wang, Tianyu
    JOURNAL OF BANKING & FINANCE, 2022, 136
  • [25] Robust Bayesian premium principles in actuarial science
    Déniz, EG
    Polo, FJV
    Bastida, AH
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES D-THE STATISTICIAN, 2000, 49 : 241 - 252
  • [26] PRINCIPLES OF PARAMETERS SELF-CORRELATION ON OBJECT SETS OF ISOLATED ORDER
    KOMAROV, VS
    EVSEEVA, IY
    STOYANOVSKII, MO
    ZHURNAL FIZICHESKOI KHIMII, 1985, 59 (07): : 1829 - 1832
  • [27] A METHOD FOR CONSTRUCTING AND INTERPRETING SOME WEIGHTED PREMIUM PRINCIPLES
    Castano-Martinez, Antonia
    Lopez-Blazquez, Fernando
    Pigueiras, Gema
    Sordo, Miguel A.
    ASTIN BULLETIN, 2020, 50 (03): : 1037 - 1064
  • [28] OPTIMAL REINSURANCE FOR VARIANCE RELATED PREMIUM CALCULATION PRINCIPLES
    Guerra, Manuel
    Centeno, Maria de Lourdes
    ASTIN BULLETIN, 2010, 40 (01): : 97 - 121
  • [29] Optimal reinsurance under variance related premium principles
    Chi, Yichun
    INSURANCE MATHEMATICS & ECONOMICS, 2012, 51 (02): : 310 - 321
  • [30] Optimal reinsurance under convex principles of premium calculation
    Kaluszka, M
    INSURANCE MATHEMATICS & ECONOMICS, 2005, 36 (03): : 375 - 398