Generalized dislocated lag function projective synchronization of fractional order chaotic systems with fully uncertain parameters

被引:10
|
作者
Wang, Cong [1 ]
Zhang, Hong-li [1 ]
Fan, Wen-hui [2 ]
机构
[1] Xinjiang Univ, Dept Elect Engn, Urumqi 830047, Xinjiang, Peoples R China
[2] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional chaotic system; Generalized dislocated lag function; projective synchronization; Parameters identification; Time delay; Secure communication; STABILITY; EQUATION;
D O I
10.1016/j.chaos.2017.02.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we propose a new method to improve the safety of secure communication. This method uses the generalized dislocated lag projective synchronization and function projective synchronization to form a new generalized dislocated lag function projective synchronization. Moreover, this paper takes the examples of fractional order Chen system and Lu system with uncertain parameters as illustration. As the parameters of the two systems are uncertain, the nonlinear controller and parameter update algorithms are designed based on the fractional stability theory and adaptive control method. Moreover, this synchronization form and method of control are applied to secure communication via chaotic masking modulation. Many information signals can be recovered and validated. Finally, simulations are used to show the validity and feasibility of the proposed scheme. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:14 / 21
页数:8
相关论文
共 50 条
  • [1] Generalized dislocated lag projective synchronization of fractional chaotic systems with fully uncertain parameters
    Li Rui
    Zhang Guang-Jun
    Yao Hong
    Zhu Tao
    Zhang Zhi-Hao
    [J]. ACTA PHYSICA SINICA, 2014, 63 (23)
  • [2] Adaptive generalized function projective lag synchronization of different chaotic systems with fully uncertain parameters
    Wu Xiang-Jun
    Lu Hong-Tao
    [J]. CHAOS SOLITONS & FRACTALS, 2011, 44 (10) : 802 - 810
  • [3] Generalized Projective Lag Synchronization in Fractional-order Chaotic Systems with Unknown Parameters
    Ma, Yancheng
    Wu, Guaon
    Jiang, Lan
    [J]. 2017 IEEE 2ND ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC), 2017, : 64 - 67
  • [4] Adaptive Generalized Function Lag Projective Synchronization and Parameter Identification of a Class of Chaotic Systems with Fully Uncertain Parameters and Disturbance
    Chai, Xiuli
    Wu, Xiangjun
    Guo, Junyan
    [J]. PROCEEDINGS OF THE 10TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA 2012), 2012, : 3265 - 3269
  • [5] Function projective lag synchronization of fractional-order chaotic systems
    王莎
    于永光
    王虎
    Ahmed Rahmani
    [J]. Chinese Physics B, 2014, 23 (04) : 175 - 181
  • [6] Function projective lag synchronization of fractional-order chaotic systems
    Sha, Wang
    Yu Yong-Guang
    Hu, Wang
    Rahmani, Ahmed
    [J]. CHINESE PHYSICS B, 2014, 23 (04)
  • [7] Projective Lag Synchronization Controller Design for Uncertain Fractional-Order Chaotic Systems
    Lv, Hui
    Zhang, Xiulan
    Liu, Heng
    Xu, Song
    [J]. 2017 29TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2017, : 6190 - 6194
  • [8] Modified projective synchronization of stochastic fractional order chaotic systems with uncertain parameters
    Shao-Juan Ma
    Qiong Shen
    Jing Hou
    [J]. Nonlinear Dynamics, 2013, 73 : 93 - 100
  • [9] Modified projective synchronization of stochastic fractional order chaotic systems with uncertain parameters
    Ma, Shao-Juan
    Shen, Qiong
    Hou, Jing
    [J]. NONLINEAR DYNAMICS, 2013, 73 (1-2) : 93 - 100
  • [10] Generalized projective synchronization of fractional order chaotic systems
    Peng, Guojun
    Jiang, Yaolin
    Chen, Fang
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (14) : 3738 - 3746