Generalized dislocated lag function projective synchronization of fractional order chaotic systems with fully uncertain parameters

被引:10
|
作者
Wang, Cong [1 ]
Zhang, Hong-li [1 ]
Fan, Wen-hui [2 ]
机构
[1] Xinjiang Univ, Dept Elect Engn, Urumqi 830047, Xinjiang, Peoples R China
[2] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional chaotic system; Generalized dislocated lag function; projective synchronization; Parameters identification; Time delay; Secure communication; STABILITY; EQUATION;
D O I
10.1016/j.chaos.2017.02.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we propose a new method to improve the safety of secure communication. This method uses the generalized dislocated lag projective synchronization and function projective synchronization to form a new generalized dislocated lag function projective synchronization. Moreover, this paper takes the examples of fractional order Chen system and Lu system with uncertain parameters as illustration. As the parameters of the two systems are uncertain, the nonlinear controller and parameter update algorithms are designed based on the fractional stability theory and adaptive control method. Moreover, this synchronization form and method of control are applied to secure communication via chaotic masking modulation. Many information signals can be recovered and validated. Finally, simulations are used to show the validity and feasibility of the proposed scheme. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:14 / 21
页数:8
相关论文
共 50 条
  • [31] Function projective synchronization for fractional-order chaotic systems
    Zhou, Ping
    Zhu, Wei
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (02) : 811 - 816
  • [32] Modified Function Projective Synchronization of two Fractional -order Chaotic Systems with Unknown Parameters
    Du, Hongyue
    [J]. PROCEEDINGS OF THE 30TH CHINESE CONTROL AND DECISION CONFERENCE (2018 CCDC), 2018, : 6575 - 6579
  • [33] Synchronization of fractional-order chaotic systems with uncertain parameters
    Zhang, Hong
    Pu, Qiumei
    [J]. ACHIEVEMENTS IN ENGINEERING MATERIALS, ENERGY, MANAGEMENT AND CONTROL BASED ON INFORMATION TECHNOLOGY, PTS 1 AND 2, 2011, 171-172 : 723 - 727
  • [34] Adaptive generalized function projective synchronization of uncertain chaotic complex systems
    Xiangjun Wu
    Jinke Wang
    [J]. Nonlinear Dynamics, 2013, 73 : 1455 - 1467
  • [35] Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions
    Wang Sha
    Yu Yong-Guang
    [J]. CHINESE PHYSICS LETTERS, 2012, 29 (02)
  • [36] Adaptive generalized function projective synchronization of uncertain chaotic complex systems
    Wu, Xiangjun
    Wang, Jinke
    [J]. NONLINEAR DYNAMICS, 2013, 73 (03) : 1455 - 1467
  • [37] Modified Generalized Projective Synchronization of Incommensurate Fractional Order Chaotic Systems
    Chao, Song
    De, Cao Jin
    [J]. PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, : 1065 - 1069
  • [38] Generalized projective lag synchronization between different hyperchaotic systems with uncertain parameters
    Xiang-Jun Wu
    Hong-Tao Lu
    [J]. Nonlinear Dynamics, 2011, 66 : 185 - 200
  • [39] Generalized projective lag synchronization between different hyperchaotic systems with uncertain parameters
    Wu, Xiang-Jun
    Lu, Hong-Tao
    [J]. NONLINEAR DYNAMICS, 2011, 66 (1-2) : 185 - 200
  • [40] Projective reduce order synchronization of fractional order chaotic systems with unknown parameters
    Al-Sawalha, M. Mossa
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (04): : 2103 - 2114