Carcino-Net: A Deep Learning Framework for Automated Gleason Grading of Prostate Biopsies

被引:0
|
作者
Lokhande, Avinash [1 ]
Bonthu, Saikiran [1 ]
Singhal, Nitin [1 ]
机构
[1] AIRA MATRIX, Mumbai, Maharashtra, India
关键词
D O I
10.1109/embc44109.2020.9176235
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Gleason scoring for prostate cancer grading is a subjective examination and suffers from suboptimal interobserver and intraobserver variability. To overcome these limitations, we have developed an automated system to grade prostate biopsies. We present a novel deep learning architecture Carcino-Net, which improves semantic segmentation performance. The proposed network is a modified FCN8s with ResNet50 backbone. Using Carcino-Net, we not only report best performance in separating the different grades, we also offer greater accuracy over other state-of-the-art frameworks. The proposed system could expedite the pathology workflow in diagnostic laboratories by triaging high-grade biopsies.
引用
收藏
页码:1380 / 1383
页数:4
相关论文
共 50 条
  • [31] An Independent Prospective Validation of a Deep Learning Algorithm for Prostate Cancer Detection and Gleason Grading
    Albertson, Daniel
    Suh, In Hye
    Mota, Sheila
    Barry, Marc
    Mahlow, Jonathon
    Knudsen, Beatrice
    Sirohi, Deepika
    Kwak, Tae-Yeong
    Lee, Yoon
    Kim, Sun Woo
    Chang, Hyeyoon
    LABORATORY INVESTIGATION, 2023, 103 (03) : S682 - S683
  • [32] Clinically applicable Gleason grading (GD) system for prostate cancer based on deep learning
    Niu Yun
    Liu Can-Cheng
    Zhang Bing-Lin
    Song Zhi-Gang
    Chen Huang
    Liu Ping-Ping
    Chen Jing-Si
    Wang Shu-Hao
    Shi Huai-Yin
    Zhong Ding-Rong
    中华医学杂志(英文版), 2021, 134 (07) : 859 - 861
  • [33] Deep learning for automatic Gleason pattern classification for grade group determination of prostate biopsies
    Marit Lucas
    Ilaria Jansen
    C. Dilara Savci-Heijink
    Sybren L. Meijer
    Onno J. de Boer
    Ton G. van Leeuwen
    Daniel M. de Bruin
    Henk A. Marquering
    Virchows Archiv, 2019, 475 : 77 - 83
  • [34] Deep learning for automatic Gleason pattern classification for grade group determination of prostate biopsies
    Lucas, Marit
    Jansen, Ilaria
    Savci-Heijink, C. Dilara
    Meijer, Sybren L.
    de Boer, Onno J.
    van Leeuwen, Ton G.
    de Bruin, Daniel M.
    Marquering, Henk A.
    VIRCHOWS ARCHIV, 2019, 475 (01) : 77 - 83
  • [35] Accurate Gleason grading of prostatic adenocarcinoma in prostate needle biopsies by general pathologists
    Renshaw, AA
    Schultz, D
    Cote, K
    Loffredo, M
    Ziemba, DE
    D'Amico, AV
    ARCHIVES OF PATHOLOGY & LABORATORY MEDICINE, 2003, 127 (08) : 1007 - 1008
  • [36] RELIABILITY OF GLEASON GRADING SYSTEM IN COMPARING PROSTATE BIOPSIES WITH TOTAL PROSTATECTOMY SPECIMENS
    BABAIAN, RJ
    GRUNOW, WA
    UROLOGY, 1985, 25 (06) : 564 - 567
  • [37] Artificial intelligence assistance significantly improves Gleason grading of prostate biopsies by pathologists
    Bulten, Wouter
    Balkenhol, Maschenka
    Belinga, Jean-Joel Awoumou
    Brilhante, Americo
    Cakir, Asli
    Egevad, Lars
    Eklund, Martin
    Farre, Xavier
    Geronatsiou, Katerina
    Molinie, Vincent
    Pereira, Guilherme
    Roy, Paromita
    Saile, Gunter
    Salles, Paulo
    Schaafsma, Ewout
    Tschui, Joelle
    Vos, Anne-Marie
    van Boven, Hester
    Vink, Robert
    van der Laak, Jeroen
    Hulsbergen-van der Kaa, Christina
    Litjens, Geert
    MODERN PATHOLOGY, 2021, 34 (03) : 660 - 671
  • [38] Crowdsourcing of artificial intelligence algorithms for diagnosis and Gleason grading of prostate cancer in biopsies
    Kartasalo, K.
    Bulten, W.
    Chen, P-H. C.
    Strom, P.
    Pinckaers, H.
    Nagpal, K.
    Ruusuvuori, P.
    Litjens, G.
    Eklund, M.
    EUROPEAN UROLOGY, 2022, 81 : S913 - S913
  • [39] Development and Validation of a Deep Learning Algorithm for Gleason Grading of Prostate Cancer From Biopsy Specimens
    Nagpal, Kunal
    Foote, Davis
    Tan, Fraser
    Liu, Yun
    Chen, Po-Hsuan Cameron
    Steiner, David F.
    Manoj, Naren
    Olson, Niels
    Smith, Jenny L.
    Mohtashamian, Arash
    Peterson, Brandon
    Amin, Mahul B.
    Evans, Andrew J.
    Sweet, Joan W.
    Cheung, Carol
    van der Kwast, Theodorus
    Sangoi, Ankur R.
    Zhou, Ming
    Allan, Robert
    Humphrey, Peter A.
    Hipp, Jason D.
    Gadepalli, Krishna
    Corrado, Greg S.
    Peng, Lily H.
    Stumpe, Martin C.
    Mermel, Craig H.
    JAMA ONCOLOGY, 2020, 6 (09) : 1372 - 1380
  • [40] Automated systems comparable to expert pathologists for prostate cancer Gleason grading
    Thomas, Tim
    NATURE REVIEWS UROLOGY, 2020, 17 (03) : 131 - 131