Carcino-Net: A Deep Learning Framework for Automated Gleason Grading of Prostate Biopsies

被引:0
|
作者
Lokhande, Avinash [1 ]
Bonthu, Saikiran [1 ]
Singhal, Nitin [1 ]
机构
[1] AIRA MATRIX, Mumbai, Maharashtra, India
关键词
D O I
10.1109/embc44109.2020.9176235
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Gleason scoring for prostate cancer grading is a subjective examination and suffers from suboptimal interobserver and intraobserver variability. To overcome these limitations, we have developed an automated system to grade prostate biopsies. We present a novel deep learning architecture Carcino-Net, which improves semantic segmentation performance. The proposed network is a modified FCN8s with ResNet50 backbone. Using Carcino-Net, we not only report best performance in separating the different grades, we also offer greater accuracy over other state-of-the-art frameworks. The proposed system could expedite the pathology workflow in diagnostic laboratories by triaging high-grade biopsies.
引用
收藏
页码:1380 / 1383
页数:4
相关论文
共 50 条
  • [21] Automated deep-learning system for Gleason grading of prostate cancer using digital pathology and genomic signatures.
    Van Booven, Derek
    Sandoval, Victor
    Kryvenko, Oleksander
    Parmar, Madhumita
    Briseno, Andres
    Arora, Himanshu
    CANCER RESEARCH, 2021, 81 (13)
  • [22] Yet Another Automated Gleason Grading System (YAAGGS) by weakly supervised deep learning
    Mun, Yechan
    Paik, Inyoung
    Shin, Su-Jin
    Kwak, Tae-Yeong
    Chang, Hyeyoon
    NPJ DIGITAL MEDICINE, 2021, 4 (01)
  • [23] Yet Another Automated Gleason Grading System (YAAGGS) by weakly supervised deep learning
    Yechan Mun
    Inyoung Paik
    Su-Jin Shin
    Tae-Yeong Kwak
    Hyeyoon Chang
    npj Digital Medicine, 4
  • [24] Inter-observer variability in Gleason grading of prostate cancer biopsies
    Salmo, E.
    Thampy, S.
    Coyne, J.
    Yousif, M.
    VIRCHOWS ARCHIV, 2020, 477 : S168 - S168
  • [25] Clinical Utility of Quantitative Gleason Grading in Prostate Biopsies and Prostatectomy Specimens
    Sauter, Guido
    Steurer, Stefan
    Clauditz, Till Sebastian
    Krech, Till
    Wittmer, Corinna
    Lutz, Florian
    Lennartz, Maximilian
    Janssen, Tim
    Hakimi, Nayira
    Simon, Ronald
    von Petersdorff-Campen, Mareike
    Jacobsen, Frank
    von Loga, Katharina
    Wilczak, Waldemar
    Minner, Sarah
    Tsourlakis, Maria Christina
    Chirico, Viktoria
    Haese, Alexander
    Heinzer, Hans
    Beyer, Burkhard
    Graefen, Markus
    Michl, Uwe
    Salomon, Georg
    Steuber, Thomas
    Budaeus, Lars Henrik
    Hekeler, Elena
    Malsy-Mink, Julia
    Kutzera, Sven
    Fraune, Christoph
    Goebel, Cosima
    Huland, Hartwig
    Schlomm, Thorsten
    EUROPEAN UROLOGY, 2016, 69 (04) : 592 - 598
  • [26] Integrating Tertiary Gleason 5 Patterns into Quantitative Gleason Grading in Prostate Biopsies and Prostatectomy Specimens
    Sauter, Guido
    Clauditz, Till
    Steurer, Stefan
    Wittmer, Corinna
    Buescheck, Franziska
    Krech, Till
    Lutz, Florian
    Lennartz, Maximilian
    Harms, Luisa
    Lawrenz, Lisa
    Moeller-Koop, Christina
    Simon, Ronald
    Jacobsen, Frank
    Wilczak, Waldemar
    Minner, Sarah
    Tsourlakis, Maria Christina
    Chirico, Viktoria
    Weidemann, Soeren
    Haese, Alexander
    Steuber, Thomas
    Salomon, Georg
    Matiu, Michael
    Vettorazzi, Eik
    Michl, Uwe
    Budaeus, Lars
    Tilki, Derya
    Thederan, Imke
    Pehrke, Dirk
    Beyer, Burkhard
    Fraune, Christoph
    Goebel, Cosima
    Heinrich, Marie
    Juhnke, Manuela
    Moeller, Katharina
    Bawahab, Ahmed Abdulwahab Abdullah
    Uhlig, Ria
    Huland, Hartwig
    Heinzer, Hans
    Graefen, Markus
    Schlomm, Thorsten
    EUROPEAN UROLOGY, 2018, 73 (05) : 674 - 683
  • [27] Automated prostate cancer diagnosis and Gleason grading of tissue microarrays
    Tabesh, A
    Kumar, VP
    Pang, HY
    Verbel, D
    Kotsianti, A
    Teverovskiy, M
    Saidi, O
    MEDICAL IMAGING 2005: IMAGE PROCESSING, PT 1-3, 2005, 5747 : 58 - 70
  • [28] Epithelium segmentation and automated Gleason grading of prostate cancer via deep learning in label-free multiphoton microscopic images
    Yang, Qinqin
    Xu, Zhexin
    Liao, Chenxi
    Cai, Jianyong
    Huang, Ying
    Chen, Hong
    Tao, Xuan
    Huang, Zheng
    Chen, Jianxin
    Dong, Jiyang
    Zhu, Xiaoqin
    JOURNAL OF BIOPHOTONICS, 2020, 13 (02)
  • [29] Clinically applicable Gleason grading (GD) system for prostate cancer based on deep learning
    Niu, Yun
    Liu, Can-Cheng
    Zhang, Bing-Lin
    Song, Zhi-Gang
    Chen, Huang
    Liu, Ping-Ping
    Chen, Jing-Si
    Wang, Shu-Hao
    Shi, Huai-Yin
    Zhong, Ding-Rong
    CHINESE MEDICAL JOURNAL, 2021, 134 (07) : 859 - 861
  • [30] Hybrid Unified Deep Learning Network for Highly Precise Gleason Grading of Prostate Cancer
    Uthappa, Poojitha P.
    Sharma, Shanker Lal
    2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2019, : 899 - 903