Carcino-Net: A Deep Learning Framework for Automated Gleason Grading of Prostate Biopsies

被引:0
|
作者
Lokhande, Avinash [1 ]
Bonthu, Saikiran [1 ]
Singhal, Nitin [1 ]
机构
[1] AIRA MATRIX, Mumbai, Maharashtra, India
关键词
D O I
10.1109/embc44109.2020.9176235
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Gleason scoring for prostate cancer grading is a subjective examination and suffers from suboptimal interobserver and intraobserver variability. To overcome these limitations, we have developed an automated system to grade prostate biopsies. We present a novel deep learning architecture Carcino-Net, which improves semantic segmentation performance. The proposed network is a modified FCN8s with ResNet50 backbone. Using Carcino-Net, we not only report best performance in separating the different grades, we also offer greater accuracy over other state-of-the-art frameworks. The proposed system could expedite the pathology workflow in diagnostic laboratories by triaging high-grade biopsies.
引用
收藏
页码:1380 / 1383
页数:4
相关论文
共 50 条
  • [1] Automated Gleason Grading of Prostate Biopsies Using Deep Learning
    Bulten, Wouter
    Pinckaers, Hans
    Hulsbergen-van de Kaa, Christina
    Litjens, Geert
    MODERN PATHOLOGY, 2019, 32
  • [2] Automated Gleason Grading of Prostate Biopsies Using Deep Learning
    Bulten, Wouter
    Pinckaers, Hans
    Hulsbergen-van de Kaa, Christina
    Litjens, Geert
    LABORATORY INVESTIGATION, 2019, 99
  • [3] Deep-learning approaches for Gleason grading of prostate biopsies
    Madabhushi, Anant
    Feldman, Michael D.
    Leo, Patrick
    LANCET ONCOLOGY, 2020, 21 (02): : 187 - 189
  • [4] AUTOMATED HISTOPATHOLOGIC DIAGNOSIS AND GLEASON GRADING OF PROSTATE BIOPSIES WITH MACHINE LEARNING
    Kott, Ohad
    Linsley, Drew
    Amin, Ali
    Karagounis, Andreas
    Golijanin, Dragan
    Serre, Thomas
    Gershman, Boris
    JOURNAL OF UROLOGY, 2019, 201 (04): : E215 - E215
  • [5] A deep learning network for Gleason grading of prostate biopsies using EfficientNet
    Ramamurthy, Karthik
    Varikuti, Abinash Reddy
    Gupta, Bhavya
    Aswani, Nehal
    BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2023, 68 (02): : 187 - 198
  • [6] Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study
    Bulten, Wouter
    Pinckaers, Hans
    van Boven, Hester
    Vink, Robert
    de Bel, Thomas
    van Ginneken, Bram
    van der Laak, Jeroen
    Hulsbergen-van de Kaa, Christina
    Litjens, Geert
    LANCET ONCOLOGY, 2020, 21 (02): : 233 - 241
  • [7] A Deep Learning System with Subspecialist-Level Accuracy for Gleason Grading Prostate Biopsies
    Nagpal, Kunal
    Foote, Davis
    Tan, Fraser
    Liu, Yun
    Chen, Po-Hsuan Cameron
    Steiner, David
    Manoj, Naren
    Olson, Niels
    Smith, Jenny
    Mohtashamian, Arash
    Peterson, Brandon
    Amin, Mahul
    Evans, Andrew
    Sweet, Joan
    Cheung, Carol
    Van der Kwast, Theodorus
    Sangoi, Ankur
    Zhou, Ming
    Allan, Robert
    Humphrey, Peter
    Hipp, Jason
    Gadepalli, Krishna
    Corrado, Greg
    Peng, Lily
    Stumpe, Martin
    Mermel, Craig
    MODERN PATHOLOGY, 2020, 33 (SUPPL 2) : 943 - 945
  • [8] Automated Gleason grading of prostate cancer tissue microarrays via deep learning
    Arvaniti, Eirini
    Fricker, Kim S.
    Moret, Michael
    Rupp, Niels
    Hermanns, Thomas
    Fankhauser, Christian
    Wey, Norbert
    Wild, Peter J.
    Ruschoff, Jan H.
    Claassen, Manfred
    SCIENTIFIC REPORTS, 2018, 8
  • [9] Automated Gleason grading of prostate cancer tissue microarrays via deep learning
    Eirini Arvaniti
    Kim S. Fricker
    Michael Moret
    Niels Rupp
    Thomas Hermanns
    Christian Fankhauser
    Norbert Wey
    Peter J. Wild
    Jan H. Rüschoff
    Manfred Claassen
    Scientific Reports, 8
  • [10] A Deep Learning System with Subspecialist-Level Accuracy for Gleason Grading Prostate Biopsies
    Nagpal, Kunal
    Foote, Davis
    Tan, Fraser
    Liu, Yun
    Chen, Po-Hsuan Cameron
    Steiner, David
    Manoj, Naren
    Olson, Niels
    Smith, Jenny
    Mohtashamian, Arash
    Peterson, Brandon
    Amin, Mahul
    Evans, Andrew
    Sweet, Joan
    Cheung, Carol
    Van der Kwast, Theodorus
    Sangoi, Ankur
    Zhou, Ming
    Allan, Robert
    Humphrey, Peter
    Hipp, Jason
    Gadepalli, Krishna
    Corrado, Greg
    Peng, Lily
    Stumpe, Martin
    Mermel, Craig
    LABORATORY INVESTIGATION, 2020, 100 (SUPPL 1) : 943 - 945