On the Fedosov deformation quantization beyond the regular Poisson manifolds

被引:5
|
作者
Dolgushev, VA [1 ]
Isaev, AP
Lyakhovich, SL
Sharapov, AA
机构
[1] Joint Inst Nucl Res, Bogoliubov Lab Theoret Phys, Dubna 141980, Moscow Region, Russia
[2] Inst Theoret & Expt Phys, Moscow 117259, Russia
[3] Max Planck Inst Math, D-53111 Bonn, Germany
[4] Chalmers Univ Technol, Dept Theoret Phys, S-41296 Gothenburg, Sweden
[5] Tomsk VV Kuibyshev State Univ, Dept Theoret Phys, Tomsk 634050, Russia
基金
俄罗斯基础研究基金会;
关键词
deformation quantization; quantum groups;
D O I
10.1016/S0550-3213(02)00763-0
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
A simple iterative procedure is suggested for the deformation quantization of (irregular) Poisson brackets associated to the classical Yang-Baxter equation. The construction is shown to admit a pure algebraic reformulation giving the Universal Deformation Formula (UDF) for any triangular Lie bialgebra. A simple proof of classification theorem for inequivalent UDF's is given. As an example the explicit quantization formula is presented for the quasi-homogeneous Poisson brackets on two-plane. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:457 / 476
页数:20
相关论文
共 50 条
  • [41] Deformation quantization of framed presymplectic manifolds
    Gorev, N. D.
    Elfimov, B. M.
    Sharapov, A. A.
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2020, 204 (02) : 1079 - 1092
  • [42] Fedosov quantization in positive characteristic
    Bezrukavnikov, R.
    Kaledin, D.
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 21 (02) : 409 - 438
  • [43] BRST quantization of quasisymplectic manifolds and beyond
    Lyakhovich, SL
    Sharapov, AA
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (04)
  • [44] On deformation of Poisson manifolds of hydrodynamic type
    Degiovanni, L
    Magri, F
    Sciacca, V
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 253 (01) : 1 - 24
  • [45] SEIBERG-WITTEN EQUATIONS FROM FEDOSOV DEFORMATION QUANTIZATION OF ENDOMORPHISM BUNDLE
    Dobrski, Michal
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2011, 8 (02) : 411 - 428
  • [46] On Deformation of Poisson Manifolds of Hydrodynamic Type
    Luca Degiovanni
    Franco Magri
    Vincenzo Sciacca
    [J]. Communications in Mathematical Physics, 2005, 253 : 1 - 24
  • [47] FEDOSOV QUANTIZATION APPROACH TO QFT
    Hollands, S.
    [J]. XVIITH INTERNATIONAL CONGRESS ON MATHEMATICAL PHYSICS, 2014, : 663 - 663
  • [48] Almost regular Poisson manifolds and their holonomy groupoids
    Androulidakis, Iakovos
    Zambon, Marco
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2017, 23 (03): : 2291 - 2330
  • [49] Group orbits and regular partitions of poisson manifolds
    Lu J.-H.
    Yakimov M.
    [J]. Communications in Mathematical Physics, 2008, 283 (3) : 729 - 748
  • [50] Almost regular Poisson manifolds and their holonomy groupoids
    Iakovos Androulidakis
    Marco Zambon
    [J]. Selecta Mathematica, 2017, 23 : 2291 - 2330