On the Fedosov deformation quantization beyond the regular Poisson manifolds

被引:5
|
作者
Dolgushev, VA [1 ]
Isaev, AP
Lyakhovich, SL
Sharapov, AA
机构
[1] Joint Inst Nucl Res, Bogoliubov Lab Theoret Phys, Dubna 141980, Moscow Region, Russia
[2] Inst Theoret & Expt Phys, Moscow 117259, Russia
[3] Max Planck Inst Math, D-53111 Bonn, Germany
[4] Chalmers Univ Technol, Dept Theoret Phys, S-41296 Gothenburg, Sweden
[5] Tomsk VV Kuibyshev State Univ, Dept Theoret Phys, Tomsk 634050, Russia
基金
俄罗斯基础研究基金会;
关键词
deformation quantization; quantum groups;
D O I
10.1016/S0550-3213(02)00763-0
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
A simple iterative procedure is suggested for the deformation quantization of (irregular) Poisson brackets associated to the classical Yang-Baxter equation. The construction is shown to admit a pure algebraic reformulation giving the Universal Deformation Formula (UDF) for any triangular Lie bialgebra. A simple proof of classification theorem for inequivalent UDF's is given. As an example the explicit quantization formula is presented for the quasi-homogeneous Poisson brackets on two-plane. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:457 / 476
页数:20
相关论文
共 50 条
  • [31] Some examples and applications of Fedosov's star products and deformation quantization
    Cariñena, JF
    Clemente-Gallardo, J
    [J]. CZECHOSLOVAK JOURNAL OF PHYSICS, 1998, 48 (11) : 1307 - 1312
  • [32] Conformally Fedosov manifolds
    Eastwood, Michael
    Slovak, Jan
    [J]. ADVANCES IN MATHEMATICS, 2019, 349 : 839 - 868
  • [33] Quantization of (-1)-Shifted Derived Poisson Manifolds
    Behrend, Kai
    Peddie, Matt
    Xu, Ping
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 402 (03) : 2301 - 2338
  • [34] On the geometric quantization of the symplectic leaves of Poisson manifolds
    Vaisman, I
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 1997, 7 (03) : 265 - 275
  • [35] Poisson sigma models and deformation quantization
    Cattaneo, AS
    Felder, G
    [J]. MODERN PHYSICS LETTERS A, 2001, 16 (4-6) : 179 - 189
  • [36] Deformation quantization of the simplest Poisson orbifold
    Sharapov, Alexey
    Skvortsov, Evgeny
    Sukhanov, Arseny
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2023, 184
  • [37] On Deformation Quantization of Quadratic Poisson Structures
    Anton Khoroshkin
    Sergei Merkulov
    [J]. Communications in Mathematical Physics, 2023, 404 : 597 - 628
  • [38] On Deformation Quantization of Quadratic Poisson Structures
    Khoroshkin, Anton
    Merkulov, Sergei
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 404 (02) : 597 - 628
  • [39] Deformation quantization of polynomial Poisson algebras
    Penkava, M
    Vanhaecke, P
    [J]. JOURNAL OF ALGEBRA, 2000, 227 (01) : 365 - 393
  • [40] Shifted Poisson structures and deformation quantization
    Calaque, Damien
    Pantev, Tony
    Toen, Bertrand
    Vaquie, Michel
    Vezzosi, Gabriele
    [J]. JOURNAL OF TOPOLOGY, 2017, 10 (02) : 483 - 584