Solubility of Fermat equations

被引:0
|
作者
Browning, T. D. [1 ]
Dietmann, R. [2 ]
机构
[1] Univ Bristol, Sch Math, Univ Walk, Bristol BS8 1TW, Avon, England
[2] Inst Algebra & Zahlentheorie, Lehrstuhl Zahlentheorie, D-70569 Stuttgart, Germany
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The arithmetic of the equation a(1)x(1)(d) + a(2)x(2)(d), + a(3)x(3)(d) = 0 is considered for d >= 2, with the outcome that the set of coefficients for which the equation admits a non-trivial integer Solution is shown to have density zero.
引用
收藏
页码:99 / +
页数:3
相关论文
共 50 条
  • [21] Fermat and Malmquist type matrix differential equations
    Y. X. Li
    K. Liu
    H. B. Si
    Analysis Mathematica, 2023, 49 : 563 - 583
  • [22] On Meromorphic Solutions of the Fermat Type Difference Equations
    Qi, Xiaoguang
    Yang, Lianzhong
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (03)
  • [23] Fermat-Like Equations that are not Partition Regular
    Mauro Di Nasso
    Maria Riggio
    Combinatorica, 2018, 38 : 1067 - 1078
  • [24] FERMAT-TYPE EQUATIONS FOR MOBIUS TRANSFORMATIONS
    Kim, Dong-Il
    KOREAN JOURNAL OF MATHEMATICS, 2010, 18 (01): : 29 - 35
  • [25] Simultaneous Fermat-Pell-Mahler equations
    Bugeaud, Yann
    Levesque, Claude
    Waldschmidt, Michel
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2011, 79 (3-4): : 357 - 366
  • [26] NOTES ON FERMAT-TYPE DIFFERENCE EQUATIONS
    Laine, Ilpo
    Latreuch, Zinelaabidine
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2024,
  • [27] Closed formulae for certain Fermat-Pell equations
    Szechtman, Fernando
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (02) : 661 - 667
  • [28] On ternary equations of Fermat type and relations with elliptic curves
    Frey, G
    MODULAR FORMS AND FERMAT'S LAST THEOREM, 1997, : 527 - 548
  • [29] Fermat-type equations (5, 5, p)
    Billerey, Nicolas
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2007, 76 (02) : 161 - 194
  • [30] ON GENERALIZED FERMAT EQUATIONS OF SIGNATURE (p, p, 3)
    Krawciow, Karolina
    COLLOQUIUM MATHEMATICUM, 2011, 123 (01) : 49 - 52