Closed formulae for certain Fermat-Pell equations

被引:0
|
作者
Szechtman, Fernando [1 ]
机构
[1] Univ Regina, Dept Math & Stat, Regina, SK S4S 0A2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Continued fraction; Fermat-Pell equation;
D O I
10.1080/00927872.2021.1964028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given positive integers j, k, with j >= 2, we show that there are positive integers d, e such that root d has continued fraction expansion root d = [e, k, ..., k, 2e], with period j, if and only if k is even or 3 inverted iota j, in which case we give closed formulae to find all such d, e as well as the smallest solution in positive integers to the Fermat-Pell equation X-2 - dY(2) = (-1)(1.)
引用
收藏
页码:661 / 667
页数:7
相关论文
共 50 条
  • [1] Fermat-Pell equation and the numbers of the form w(2)+(w+1)(2)
    Tsangaris, PG
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1995, 47 (1-2): : 127 - 138
  • [2] Simultaneous Fermat-Pell-Mahler equations
    Bugeaud, Yann
    Levesque, Claude
    Waldschmidt, Michel
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2011, 79 (3-4): : 357 - 366
  • [3] Solution of certain Pell equations
    Raza, Zahid
    Malik, Hafsa Masood
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2018, 11 (04)
  • [4] Pell's equation and Fermat
    Dolan, Stan
    MATHEMATICAL GAZETTE, 2012, 96 (535): : 66 - 70
  • [5] Quadratic formulae for certain quadratic matrix equations
    Young, Phil D.
    Young, Dean M.
    Odell, Patrick L.
    Mathematical Scientist, 2015, 40 (01): : 35 - 41
  • [6] On Certain Fermat Diophantine Functional Equations C2
    Wang, Qiong
    Liao, Liangwen
    Chen, Wei
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2023, 23 (01) : 87 - 100
  • [7] Bartlett's formulae - Closed forms and recurrent equations
    Boshnakov, GN
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1996, 48 (01) : 49 - 59
  • [8] Meromorphic solutions of Fermat type differential and difference equations of certain types
    Guo, Yinhao
    Liu, Kai
    ANNALES POLONICI MATHEMATICI, 2023, 131 (01) : 1 - 19
  • [9] Reciprocal Formulae among Pell and Lucas Polynomials
    Bai, Mei
    Chu, Wenchang
    Guo, Dongwei
    MATHEMATICS, 2022, 10 (15)
  • [10] Analogues to Fermat primes related to Pell's equation
    Koehler, Guenter
    ARCHIV DER MATHEMATIK, 2010, 94 (01) : 49 - 52