Closed formulae for certain Fermat-Pell equations

被引:0
|
作者
Szechtman, Fernando [1 ]
机构
[1] Univ Regina, Dept Math & Stat, Regina, SK S4S 0A2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Continued fraction; Fermat-Pell equation;
D O I
10.1080/00927872.2021.1964028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given positive integers j, k, with j >= 2, we show that there are positive integers d, e such that root d has continued fraction expansion root d = [e, k, ..., k, 2e], with period j, if and only if k is even or 3 inverted iota j, in which case we give closed formulae to find all such d, e as well as the smallest solution in positive integers to the Fermat-Pell equation X-2 - dY(2) = (-1)(1.)
引用
收藏
页码:661 / 667
页数:7
相关论文
共 50 条
  • [11] Analogues to Fermat primes related to Pell’s equation
    Günter Köhler
    Archiv der Mathematik, 2010, 94 : 49 - 52
  • [12] The Set of Automorphisms of Pell Forms and Pell Equations
    Tekcan, Ahmet
    Biberoglu, Gulsah
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2022, 46 (06) : 783 - 800
  • [13] Simultaneous Pell equations
    Masser, DW
    Rickert, JH
    JOURNAL OF NUMBER THEORY, 1996, 61 (01) : 52 - 66
  • [14] Entire solutions of two certain Fermat-type ordinary differential equations
    Hu, Binbin
    Yang, Liu
    OPEN MATHEMATICS, 2023, 21 (01):
  • [15] ON CERTAIN BIHYPERNOMIALS RELATED TO PELL AND PELL-LUCAS NUMBERS
    Szynal-Liana, Anetta
    Wloch, Iwona
    Liana, Miroslaw
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2022, 71 (02): : 422 - 433
  • [16] On Entire Solutions of Two Certain Fermat-Type Differential–Difference Equations
    Qiong Wang
    Wei Chen
    Peichu Hu
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 2951 - 2965
  • [17] Simultaneous Pell equations
    Yuan, PZ
    ACTA ARITHMETICA, 2004, 115 (02) : 119 - 131
  • [18] Pell equations for polynomials
    Hazama, F
    INDAGATIONES MATHEMATICAE-NEW SERIES, 1997, 8 (03): : 387 - 397
  • [19] Simultaneous Pell Equations
    Sihabudin, N. A.
    Sapar, S. H.
    Johari, M. A. M.
    ADVANCES IN INDUSTRIAL AND APPLIED MATHEMATICS, 2016, 1750
  • [20] Simultaneous Pell equations
    Anglin, WS
    MATHEMATICS OF COMPUTATION, 1996, 65 (213) : 355 - 359