On the geometry of higher order Lagrange spaces

被引:0
|
作者
Miron, R [1 ]
Anastasiei, M [1 ]
Bucataru, I [1 ]
机构
[1] Al I Cuza Univ, Iasi Dept Math, Iasi 6600, Romania
来源
关键词
time-dependent Lagrangian; Riemannian and Finslerain structures;
D O I
暂无
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
A Lagrange space of order k greater than or equal to 1 is the space of accelerations of order k endowed with a regular Lagrangian. For theses spaces we discuss: certain natural geometrical structures, variational problem associated to a given regular Lagrangian and the induced semispray, nonlinear connection, metrical connections. Special attention is paid to the prolongations of the Riemannian and Finslerian structures. In the end we sketch the geometry of time-dependent Lagrangian. The geometry, which we have developed, is directed to Mechanicists and Physicists. The paper is a brief survey of our results in the higher order geometry. For details we refer to the monograph [3].
引用
收藏
页码:57 / 66
页数:10
相关论文
共 50 条
  • [41] THE SPECTRAL GEOMETRY OF THE HIGHER-ORDER LAPLACIAN
    GILKEY, PB
    DUKE MATHEMATICAL JOURNAL, 1980, 47 (03) : 511 - 528
  • [42] ON GEOMETRY OF G-STRUCTURES OF HIGHER ORDER
    OGIUE, K
    PROCEEDINGS OF THE JAPAN ACADEMY, 1967, 43 (04): : 255 - &
  • [43] Optimization of Lagrange Problem with Higher Order Differential Inclusions and Endpoint Constraints
    Mahmudov, Elimhan N.
    FILOMAT, 2018, 32 (07) : 2367 - 2382
  • [44] Higher order Lagrange-Poincar, and Hamilton-Poincar, reductions
    Gay-Balmaz, Francois
    Holm, Darryl D.
    Ratiu, Tudor S.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2011, 42 (04): : 579 - 606
  • [45] Higher-order Gauss-Bonnet cosmology by Lagrange multipliers
    Capozziello, Salvatore
    Francaviglia, Mauro
    Makarenko, Andrey N.
    ASTROPHYSICS AND SPACE SCIENCE, 2014, 349 (01) : 603 - 609
  • [46] Error Analysis of Higher Order Bivariate Lagrange and Triangular Interpolations in Electromagnetics
    Luo, Wen
    Liu, Jinbo
    Li, Zengrui
    Song, Jiming
    IEEE OPEN JOURNAL OF ANTENNAS AND PROPAGATION, 2020, 1 : 590 - 597
  • [47] Higher-order Gauss-Bonnet cosmology by Lagrange multipliers
    Salvatore Capozziello
    Mauro Francaviglia
    Andrey N. Makarenko
    Astrophysics and Space Science, 2014, 349 : 603 - 609
  • [48] LAGRANGIAN SUBMANIFOLDS AND THE EULER LAGRANGE EQUATIONS IN HIGHER-ORDER MECHANICS
    CRAMPIN, M
    LETTERS IN MATHEMATICAL PHYSICS, 1990, 19 (01) : 53 - 58
  • [49] Higher order Lagrange-Poincaré and Hamilton-Poincaré reductions
    François Gay-Balmaz
    Darryl D. Holm
    Tudor S. Ratiu
    Bulletin of the Brazilian Mathematical Society, New Series, 2011, 42 : 579 - 606
  • [50] Euler-Lagrange Equations of Networks with Higher-Order Elements
    Biolek, Zdenek
    Biolek, Dalibor
    RADIOENGINEERING, 2017, 26 (02) : 397 - 405