Monitoring Charge Density Delocalization upon Plasmon Excitation with Ultrafast Surface-Enhanced Raman Spectroscopy

被引:13
|
作者
Keller, Emily L. [1 ]
Frontiera, Renee R. [1 ]
机构
[1] Univ Minnesota, Dept Chem, 207 Pleasant St SE, Minneapolis, MN 55455 USA
来源
ACS PHOTONICS | 2017年 / 4卷 / 05期
关键词
plasmonic photocatalysis; ultrafast plasmonics; surface-enhanced Raman spectroscopy; RELAXATION DYNAMICS; GOLD NANORODS; NANOPARTICLES; SHAPE; SIZE;
D O I
10.1021/acsphotonics.7b00082
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Plasmonic materials hold a great deal of potential for advances in energy and chemical applications by converting light into chemical energy. Many of these processes are aided by plasmon-generated hot electrons. However, the interaction between these hot electrons and adsorbed molecules on a plasmonic substrate is not well understood. Using ultrafast surface-enhanced Raman spectroscopy, we monitor plasmon molecule interactions in real time using 4-nitrobenzenethiol as a molecular probe. Upon plasmon excitation, we observe transient peak depletions in our ultrafast surface-enhanced Raman spectra on the picosecond time scale. We attribute this peak depletion to a localized surface plasmon resonance red shift as a result of hot electron generation in our aggregated nanoparticles. Once generated, the delocalize across the aggregate. By correlating the magnitude of the transient Raman dynamics with the degree of electron delocalization, we estimate charge displacement on the order of 109 electrons per aggregate. This indirect quantification of hot electron delocalization on aggregated nanoparticles will be of use in the rational design of materials for efficient plasmon-driven photochemistry.
引用
收藏
页码:1033 / 1039
页数:7
相关论文
共 50 条
  • [41] Electrochemical surface-enhanced Raman spectroscopy
    不详
    NATURE REVIEWS METHODS PRIMERS, 2023, 3 (01):
  • [42] Surface-enhanced Raman Spectroscopy of Pterins
    Smyth, Ciaran A.
    Mirza, Inam
    Lunney, James G.
    McCabe, Eithne M.
    PLASMONICS IN BIOLOGY AND MEDICINE IX, 2012, 8234
  • [43] Reproducibility in surface-enhanced Raman spectroscopy
    Xiong M.
    Ye J.
    Journal of Shanghai Jiaotong University (Science), 2014, 19 (06) : 681 - 690
  • [44] Urinalysis by surface-enhanced Raman spectroscopy
    Farquharson, S
    Lee, YH
    Kwon, H
    Shahriari, M
    Rainey, P
    SPACE TECHNOLOGY AND APPLICATIONS INTERNATIONAL FORUM, PTS 1 AND 2, 2000, 504 : 306 - 311
  • [45] Surface-enhanced Raman spectroscopy of DNA
    Barhoumi, Aoune
    Zhang, Dongmao
    Tam, Felicia
    Halas, Naomi J.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (16) : 5523 - 5529
  • [46] Electrochemical surface-enhanced Raman spectroscopy
    Nature Reviews Methods Primers, 3
  • [47] Surface-Enhanced Raman Spectroscopy Recent Advancement of Raman Spectroscopy
    Sur, Ujjal Kumar
    RESONANCE-JOURNAL OF SCIENCE EDUCATION, 2010, 15 (02): : 154 - 164
  • [48] Ultrafast Surface-Enhanced Raman Probing of the Role of Hot Electrons in Plasmon-Driven Chemistry
    Brandt, Nathaniel C.
    Keller, Emily L.
    Frontiera, Renee R.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2016, 7 (16): : 3179 - 3185
  • [49] Monitoring kinetic processes of drugs and metabolites: Surface-enhanced Raman spectroscopy
    Luo, Zhewen
    Chen, Haoran
    Bi, Xinyuan
    Ye, Jian
    ADVANCED DRUG DELIVERY REVIEWS, 2025, 217
  • [50] Ultrafast charge transfer in surface-enhanced Raman scattering (SERS) processes using transient reflecting grating (TRG) spectroscopy
    Shibamoto, Kohei
    Katayama, Kenji
    Sawada, Tsuguo
    CHEMICAL PHYSICS LETTERS, 2007, 433 (4-6) : 385 - 389