Monitoring Charge Density Delocalization upon Plasmon Excitation with Ultrafast Surface-Enhanced Raman Spectroscopy

被引:13
|
作者
Keller, Emily L. [1 ]
Frontiera, Renee R. [1 ]
机构
[1] Univ Minnesota, Dept Chem, 207 Pleasant St SE, Minneapolis, MN 55455 USA
来源
ACS PHOTONICS | 2017年 / 4卷 / 05期
关键词
plasmonic photocatalysis; ultrafast plasmonics; surface-enhanced Raman spectroscopy; RELAXATION DYNAMICS; GOLD NANORODS; NANOPARTICLES; SHAPE; SIZE;
D O I
10.1021/acsphotonics.7b00082
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Plasmonic materials hold a great deal of potential for advances in energy and chemical applications by converting light into chemical energy. Many of these processes are aided by plasmon-generated hot electrons. However, the interaction between these hot electrons and adsorbed molecules on a plasmonic substrate is not well understood. Using ultrafast surface-enhanced Raman spectroscopy, we monitor plasmon molecule interactions in real time using 4-nitrobenzenethiol as a molecular probe. Upon plasmon excitation, we observe transient peak depletions in our ultrafast surface-enhanced Raman spectra on the picosecond time scale. We attribute this peak depletion to a localized surface plasmon resonance red shift as a result of hot electron generation in our aggregated nanoparticles. Once generated, the delocalize across the aggregate. By correlating the magnitude of the transient Raman dynamics with the degree of electron delocalization, we estimate charge displacement on the order of 109 electrons per aggregate. This indirect quantification of hot electron delocalization on aggregated nanoparticles will be of use in the rational design of materials for efficient plasmon-driven photochemistry.
引用
收藏
页码:1033 / 1039
页数:7
相关论文
共 50 条
  • [31] A Universal Surface-Enhanced Raman Spectroscopy Substrate for "All" Excitation Wavelengths
    Zhang, Nan
    Liu, Kai
    Song, Haomin
    Zeng, Xie
    Ji, Dengxin
    Gan, Qiaoqiang
    2015 PHOTONICS CONFERENCE (IPC), 2015,
  • [32] Combining Surface Plasmon Resonance (SPR) Spectroscopy with Surface-Enhanced Raman Scattering (SERS)
    Meyer, Stefan A.
    Le Ru, Eric C.
    Etchegoin, Pablo G.
    ANALYTICAL CHEMISTRY, 2011, 83 (06) : 2337 - 2344
  • [33] Localized surface plasmon resonance immunoassay and verification using surface-enhanced Raman spectroscopy
    Yonzon, CAR
    Zhang, XY
    Van Duyne, RP
    NANOMATERIALS AND THEIR OPTICAL APPLICATIONS, 2003, 5224 : 78 - 85
  • [34] Surface-enhanced Raman spectroscopy on a surface plasmon resonance biosensor platform for gene diagnostics
    Yuan, W.
    Ho, H. P.
    Suen, Y. K.
    Kong, S. K.
    Lin, Chinlon
    Prasad, Paras N.
    Li, J.
    Ong, Daniel H. C.
    PLASMONICS IN BIOLOGY AND MEDICINE V, 2008, 6869
  • [35] Self-Organized Nanogratings for Large-Area Surface Plasmon Polariton Excitation and Surface-Enhanced Raman Spectroscopy Sensing
    Barelli, Matteo
    Giordano, Maria Caterina
    Gucciardi, Pietro Giuseppe
    de Mongeot, Francesco Buatier
    ACS APPLIED NANO MATERIALS, 2020, 3 (09) : 8784 - 8793
  • [36] Gold Nanorod Arrays: Excitation of Transverse Plasmon Modes and Surface-Enhanced Raman Applications
    Mirza, Jeff
    Martens, Isaac
    Gruesser, Martin
    Bizzotto, Dan
    Schuster, Rolf
    Lipkowski, Jacek
    JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (29): : 16246 - 16253
  • [37] Reproducibility in Surface-Enhanced Raman Spectroscopy
    熊敏
    叶坚
    JournalofShanghaiJiaotongUniversity(Science), 2014, 19 (06) : 681 - 690
  • [38] Surface-Enhanced Raman Spectroscopy of Graphene
    Schedin, Fred
    Lidorikis, Elefterios
    Lombardo, Antonio
    Kravets, Vasyl G.
    Geim, Andre K.
    Grigorenko, Alexander N.
    Novoselov, Kostya S.
    Ferrari, Andrea C.
    ACS NANO, 2010, 4 (10) : 5617 - 5626
  • [39] SURFACE-ENHANCED RAMAN-SPECTROSCOPY
    GARRELL, RL
    ANALYTICAL CHEMISTRY, 1989, 61 (06) : A401 - &
  • [40] Quantitative surface-enhanced Raman spectroscopy
    Bell, Steven E. J.
    Sirimuthu, Narayana M. S.
    CHEMICAL SOCIETY REVIEWS, 2008, 37 (05) : 1012 - 1024