Ricci flow and Perelman's proof of the Poincare conjecture

被引:0
|
作者
Gadgil, Siddhartha [1 ]
Seshadri, Harish [1 ]
机构
[1] Indian Inst Sci, Dept Math, Bangalore 560012, Karnataka, India
来源
CURRENT SCIENCE | 2006年 / 91卷 / 10期
关键词
Poincare conjecture; Ricci flow; topology;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Poincare conjecture was one of the most fundamental unsolved problems in mathematics for close to a century. This was solved in a series of highly original preprints by the Russian mathematician Grisha Perelman, for which he was awarded the Fields Medal (2006). Perelman's proof, building on the work of Hamilton, was based on the Ricci flow, which resembles a nonlinear heat equation. Many of Perelman's and Hamilton's fundamental ideas may be of considerable significance in other settings. This article gives an exposition of the work, starting with some basic concepts.
引用
收藏
页码:1326 / 1334
页数:9
相关论文
共 50 条
  • [11] New Proofs of Perelman’s Theorem on Shrinking Breathers in Ricci Flow
    Peng Lu
    Yu Zheng
    The Journal of Geometric Analysis, 2018, 28 : 3718 - 3724
  • [12] PERELMAN'S ENTROPY AND KAHLER-RICCI FLOW ON A FANO MANIFOLD
    Tian, Gang
    Zhang, Shijin
    Zhang, Zhenlei
    Zhu, Xiaohua
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (12) : 6669 - 6695
  • [13] Perelman’s invariant, Ricci flow, and the Yamabe invariants of smooth manifolds
    Kazuo Akutagawa
    Masashi Ishida
    Claude LeBrun
    Archiv der Mathematik, 2007, 88 : 71 - 76
  • [14] Perelman's entropy functional at Type I singularities of the Ricci flow
    Mantegazza, Carlo
    Mueller, Reto
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2015, 703 : 173 - 199
  • [15] Ricci Flow and the Poincaré Conjecture
    Siddhartha Gadgil
    Harish Seshadri
    The Mathematical Intelligencer, 2007, 29 : 34 - 43
  • [16] Perelman's entropy on ancient Ricci flows
    Ma, Zilu
    Zhang, Yongjia
    JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 281 (09)
  • [17] Poincare's works leading to the Poincare conjecture
    Ji, Lizhen
    Wang, Chang
    ARCHIVE FOR HISTORY OF EXACT SCIENCES, 2022, 76 (03) : 223 - 260
  • [18] On second variation of Perelman's Ricci shrinker entropy
    Cao, Huai-Dong
    Zhu, Meng
    MATHEMATISCHE ANNALEN, 2012, 353 (03) : 747 - 763
  • [19] On second variation of Perelman’s Ricci shrinker entropy
    Huai-Dong Cao
    Meng Zhu
    Mathematische Annalen, 2012, 353 : 747 - 763
  • [20] Cobordism, singularities and the Ricci flow conjecture
    David Martín Velázquez
    Davide De Biasio
    Dieter Lüst
    Journal of High Energy Physics, 2023