Ricci Flow and the Poincaré Conjecture

被引:0
|
作者
Siddhartha Gadgil
Harish Seshadri
机构
[1] Imdian Institute of Science,Department of Mathematics
来源
关键词
Manifold; Riemannian Manifold; Scalar Curvature; Sectional Curvature; Mathematical Intelligencer;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:34 / 43
页数:9
相关论文
共 50 条
  • [1] Ricci flow and the Poincare conjecture
    Gadgil, Siddhartha
    Seshadri, Harish
    MATHEMATICAL INTELLIGENCER, 2007, 29 (04): : 34 - 43
  • [2] The Ricci Flow Equation and Poincare Conjecture
    Mukherjee, Amiya
    APPLIED MATHEMATICS, 2015, 146 : 21 - 29
  • [3] Cobordism, singularities and the Ricci flow conjecture
    David Martín Velázquez
    Davide De Biasio
    Dieter Lüst
    Journal of High Energy Physics, 2023
  • [4] Cobordism, singularities and the Ricci flow conjecture
    Velazquez, David Martin
    De Biasio, Davide
    Lust, Dieter
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (01)
  • [5] An inverse to the Poincaré conjecture
    M. Kreck
    Archiv der Mathematik, 2001, 77 : 98 - 106
  • [6] On the proof of the Poincaré conjecture
    Department of Mathematics, Indian Institute of Science, Bangalore 560012
    J Indian Inst Sci, 2007, 4 (451-456):
  • [7] Poincaré’s works leading to the Poincaré conjecture
    Lizhen Ji
    Chang Wang
    Archive for History of Exact Sciences, 2022, 76 : 223 - 260
  • [8] Ricci flow and Perelman's proof of the Poincare conjecture
    Gadgil, Siddhartha
    Seshadri, Harish
    CURRENT SCIENCE, 2006, 91 (10): : 1326 - 1334
  • [9] Poincaré conjecture and related statements
    V. N. Berestovskii
    Russian Mathematics, 2007, 51 (9) : 1 - 36
  • [10] Bergman kernel along the Kahler-Ricci flow and Tian's conjecture
    Jiang, Wenshuai
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2016, 717 : 195 - 226