An inverse to the Poincaré conjecture

被引:0
|
作者
M. Kreck
机构
[1] Mathematisches Institut,
[2] Universität Heidelberg,undefined
[3] 69120 Heidelberg,undefined
[4] Mathematisches Forschungsinstitut Oberwolfach,undefined
[5] 77709 Oberwolfach,undefined
[6] Federal Republic of Germany,undefined
来源
Archiv der Mathematik | 2001年 / 77卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The notion of Poincaré manifolds is introduced, which are roughly 1-connected manifolds which are determined by tem heir homology. The Poincaré conjecture says that spheres are Poincaré manifolds. The determination of all Poincaré manifolds is a sort of inverse to the Poincaré conjecture. Besides some information in low dimensions we give some results on generalized Poincaré manifolds.
引用
收藏
页码:98 / 106
页数:8
相关论文
共 50 条
  • [1] On the proof of the Poincaré conjecture
    Department of Mathematics, Indian Institute of Science, Bangalore 560012
    J Indian Inst Sci, 2007, 4 (451-456):
  • [2] Poincaré’s works leading to the Poincaré conjecture
    Lizhen Ji
    Chang Wang
    Archive for History of Exact Sciences, 2022, 76 : 223 - 260
  • [3] Poincaré conjecture and related statements
    V. N. Berestovskii
    Russian Mathematics, 2007, 51 (9) : 1 - 36
  • [4] Ricci Flow and the Poincaré Conjecture
    Siddhartha Gadgil
    Harish Seshadri
    The Mathematical Intelligencer, 2007, 29 : 34 - 43
  • [5] A Generalization of the Poincaré Compactification and the Real Jacobian Conjecture
    Claudia Valls
    Journal of Dynamics and Differential Equations, 2024, 36 : 619 - 631
  • [6] An inverse to the Poincare conjecture
    Kreck, M
    ARCHIV DER MATHEMATIK, 2001, 77 (01) : 98 - 106
  • [7] Rigor with machine learning from field theory to the Poincaré conjecture
    Gukov, Sergei
    Halverson, James
    Ruehle, Fabian
    NATURE REVIEWS PHYSICS, 2024, 6 (05) : 310 - 319
  • [8] INVERSE DEGREES AND THE JACOBIAN CONJECTURE
    DERKSEN, H
    COMMUNICATIONS IN ALGEBRA, 1994, 22 (12) : 4793 - 4794
  • [9] On the inverse hoop conjecture of Hod
    K. K. Nandi
    R. N. Izmailov
    A. A. Potapov
    N. G. Migranov
    The European Physical Journal C, 2021, 81
  • [10] On the inverse hoop conjecture of Hod
    Nandi, K. K.
    Izmailov, R. N.
    Potapov, A. A.
    Migranov, N. G.
    EUROPEAN PHYSICAL JOURNAL C, 2021, 81 (11):