Nilpotency and strong nilpotency for finite semigroups

被引:1
|
作者
Almeida, J. [1 ,2 ]
Shahzamanian, M. H. [1 ,2 ]
Kufleitner, M. [3 ]
机构
[1] Univ Porto, Fac Ciencias, Ctr Matemat, Rua Campo Alegre 687, P-4169007 Porto, Portugal
[2] Univ Porto, Fac Ciencias, Dept Matemat, Rua Campo Alegre 687, P-4169007 Porto, Portugal
[3] Loughborough Univ, Dept Comp Sci, Epinal Way, Loughborough LE11 3TU, Leics, England
来源
QUARTERLY JOURNAL OF MATHEMATICS | 2019年 / 70卷 / 02期
关键词
D O I
10.1093/qmath/hay059
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Nilpotent semigroups in the sense of Mal'cev are defined by semigroup identities. Finite nilpotent semigroups constitute a pseudovariety, MN, which has finite rank. The semigroup identities that define nilpotent semigroups lead us to define strongly Mal'cev nilpotent semigroups. Finite strongly Mal'cev nilpotent semigroups constitute a non-finite rank pseudovariety, SMN. The pseudovariety SMN is strictly contained in the pseudovariety MN, but all finite nilpotent groups are in SMN. We show that the pseudovariety MN is the intersection of the pseudovariety BGnil with a pseudovariety defined by a kappa-identity. We further compare the pseudovarieties MN and SMN with the Mal'cev product J(m) G(nill).
引用
收藏
页码:619 / 648
页数:30
相关论文
共 50 条
  • [41] Cocategory and nilpotency
    Cocategorie et nilpotence
    Haouari, M.E. (haouari@math.univ-lille1.fr), 1600, Forum-Editrice Universitaria Udinese SRL
  • [42] On p-nilpotency and minimal subgroups of finite groups
    郭秀云
    K.P.Shum
    ScienceinChina,SerA., 2003, Ser.A.2003 (02) : 176 - 186
  • [43] On p-nilpotency and minimal subgroups of finite groups
    Guo Xiuyun
    K. P. Shum
    Science in China Series B: Chemistry, 2003, 46 (2): : 176 - 186
  • [44] On the nilpotency and solubility of the central automorphism group of a finite group
    Jafari, Mir-Heidar
    Jamali, Ali-Reza
    ALGEBRA COLLOQUIUM, 2008, 15 (03) : 485 - 492
  • [45] On p-nilpotency and minimal subgroups of finite groups
    Xiuyun Guo
    K. P. Shum
    Science in China Series A: Mathematics, 2003, 46 : 176 - 186
  • [46] A-NILPOTENCY
    KOULIBALY, A
    MICALI, A
    ARCHIV DER MATHEMATIK, 1991, 57 (02) : 140 - 143
  • [47] Engel Condition and p-nilpotency of Finite Groups
    Wang, Lei
    Qiu, Zheng Tian
    Qiao, Shou Hong
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2021, 37 (09) : 1465 - 1470
  • [48] Nilpotency, solvability and the twisting function of finite groups II
    Heineken, Hermann
    Herfort, Wolfgang
    Kaplan, Gil
    ARCHIV DER MATHEMATIK, 2014, 102 (06) : 501 - 512
  • [49] On an extension of the Frobenius theorem about -nilpotency of a finite group
    Kong, Qingjun
    MONATSHEFTE FUR MATHEMATIK, 2014, 175 (01): : 133 - 138
  • [50] New criteria for p-nilpotency of finite groups
    Zhang, Xinjian
    Miao, Long
    Zhang, Jia
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2018, 25 (04) : 481 - 493