Nilpotency and strong nilpotency for finite semigroups

被引:1
|
作者
Almeida, J. [1 ,2 ]
Shahzamanian, M. H. [1 ,2 ]
Kufleitner, M. [3 ]
机构
[1] Univ Porto, Fac Ciencias, Ctr Matemat, Rua Campo Alegre 687, P-4169007 Porto, Portugal
[2] Univ Porto, Fac Ciencias, Dept Matemat, Rua Campo Alegre 687, P-4169007 Porto, Portugal
[3] Loughborough Univ, Dept Comp Sci, Epinal Way, Loughborough LE11 3TU, Leics, England
来源
QUARTERLY JOURNAL OF MATHEMATICS | 2019年 / 70卷 / 02期
关键词
D O I
10.1093/qmath/hay059
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Nilpotent semigroups in the sense of Mal'cev are defined by semigroup identities. Finite nilpotent semigroups constitute a pseudovariety, MN, which has finite rank. The semigroup identities that define nilpotent semigroups lead us to define strongly Mal'cev nilpotent semigroups. Finite strongly Mal'cev nilpotent semigroups constitute a non-finite rank pseudovariety, SMN. The pseudovariety SMN is strictly contained in the pseudovariety MN, but all finite nilpotent groups are in SMN. We show that the pseudovariety MN is the intersection of the pseudovariety BGnil with a pseudovariety defined by a kappa-identity. We further compare the pseudovarieties MN and SMN with the Mal'cev product J(m) G(nill).
引用
收藏
页码:619 / 648
页数:30
相关论文
共 50 条
  • [31] Nilpotency of finite groups with Frobenius groups of automorphisms
    Khukhro, E. I.
    Shumyatsky, P.
    MONATSHEFTE FUR MATHEMATIK, 2011, 163 (04): : 461 - 470
  • [32] On the n—nilpotency
    Hammoudi L.
    Results in Mathematics, 2002, 41 (3-4) : 307 - 315
  • [33] VERIFYING NILPOTENCY
    SIMS, CC
    JOURNAL OF SYMBOLIC COMPUTATION, 1987, 3 (03) : 231 - 247
  • [34] Homotopy nilpotency
    Crabb, MC
    Sutherland, WA
    Zhang, P
    QUARTERLY JOURNAL OF MATHEMATICS, 1999, 50 (198): : 179 - 196
  • [35] Largeness and nilpotency
    Jaber, K
    Wagner, FO
    COMMUNICATIONS IN ALGEBRA, 2000, 28 (06) : 2869 - 2885
  • [36] ON HOMOTOPY NILPOTENCY
    Golasinski, Marek
    GLASNIK MATEMATICKI, 2021, 56 (02) : 391 - 406
  • [37] ON NILPOTENCY OF ALGEBRAS
    ABIAN, A
    AMERICAN MATHEMATICAL MONTHLY, 1967, 74 (1P1): : 33 - &
  • [38] Engel Condition and p-nilpotency of Finite Groups
    Lei Wang
    Zheng Tian Qiu
    Shou Hong Qiao
    Acta Mathematica Sinica, English Series, 2021, 37 : 1465 - 1470
  • [39] On p-nilpotency and minimal subgroups of finite groups
    Guo, XY
    Shum, KP
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2003, 46 (02): : 176 - 186
  • [40] SOME SUFFICIENT CONDITIONS IMPLYING NILPOTENCY OF FINITE GROUPS
    Kong, Qingjun
    Wang, Shuai
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2018, (40): : 122 - 125