Influence diagnostics in semiparametric regression models

被引:27
|
作者
Kim, C
Park, BU
Kim, W
机构
[1] Pusan Natl Univ, Dept Stat, Pusan 609735, South Korea
[2] Seoul Natl Univ, Dept Stat, Seoul 151747, South Korea
基金
新加坡国家研究基金会;
关键词
bandwidth; cross-validation; hat matrix; influential observations; local polynomial; smoothing spline;
D O I
10.1016/S0167-7152(02)00268-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we consider the semiparametric regression model, Y = x'beta + m(t) + epsilon, and provide some influence diagnostics for estimators of beta, m and the mean response x'beta + m(t). We express these influence diagnostics as functions of the residuals and leverages. We find that an influential observation on the estimator of the coefficient vector beta may not be influential on that of the nonparametric component m, and vice versa. Also, an observation which is not influential on each of them may be influential on the estimator of the mean response. Therefore, influence of an observation should be evaluated on each estimator separately. An illustrative example based on a real data set is also given. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:49 / 58
页数:10
相关论文
共 50 条