Semiparametric estimation of regression functions in autoregressive models

被引:8
|
作者
Yu, Zhuoxi [1 ,2 ]
Wang, Dehui [1 ]
Shi, Ningzhong [3 ]
机构
[1] Jilin Univ, Dept Stat, Coll Math, Changchun 130012, Peoples R China
[2] Changchun Taxation Coll, Dept Appl Math, Changchun 130117, Peoples R China
[3] NE Normal Univ, Changchun 130021, Peoples R China
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
NONPARAMETRIC DENSITY-ESTIMATION;
D O I
10.1016/j.spl.2008.07.047
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper proposes a semiparametric method for an autoregressive model by combining a parametric regression estimator with a nonparametric adjustment. The regression has a parametric framework. After the parameter is estimated through a general parametric method, the obtained regression function is adjusted by a nonparametric factor, and the nonparametric factor is obtained through a natural consideration of the local L-2-fitting criterion. Some asymptotic and simulation results for the semiparametric method are discussed. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:165 / 172
页数:8
相关论文
共 50 条