scMC learns biological variation through the alignment of multiple single-cell genomics datasets

被引:24
|
作者
Zhang, Lihua [1 ,2 ]
Nie, Qing [1 ,2 ,3 ]
机构
[1] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
[2] Univ Calif Irvine, NSF Simons Ctr Multiscale Cell Fate Res, Irvine, CA 92697 USA
[3] Univ Calif Irvine, Dept Dev & Cell Biol, Irvine, CA 92697 USA
关键词
Single-cell genomics data; Data integration; Biological variation; Technical variation; Batch effect removal; EXPRESSION;
D O I
10.1186/s13059-020-02238-2
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Distinguishing biological from technical variation is crucial when integrating and comparing single-cell genomics datasets across different experiments. Existing methods lack the capability in explicitly distinguishing these two variations, often leading to the removal of both variations. Here, we present an integration method scMC to remove the technical variation while preserving the intrinsic biological variation. scMC learns biological variation via variance analysis to subtract technical variation inferred in an unsupervised manner. Application of scMC to both simulated and real datasets from single-cell RNA-seq and ATAC-seq experiments demonstrates its capability of detecting context-shared and context-specific biological signals via accurate alignment.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] The applications of single-cell genomics
    Lovett, Michael
    HUMAN MOLECULAR GENETICS, 2013, 22 : R22 - R26
  • [22] Single-cell genomics in the brain
    Brooke LaFlamme
    Nature Genetics, 2014, 46 (10) : 1050 - 1050
  • [23] Single-cell genomics reveals the genesis of cancer: copy number variation precedes single nucleotide variation
    Xie, Sunney
    Huang, Lei
    Ma, Fei
    Wang, Jingran
    Ding, Shigang
    Gu, Fang
    Wang, Wenjing
    Zhang, Jing
    CANCER RESEARCH, 2015, 75
  • [24] Integration of single-cell proteomic datasets through distinctive proteins in cell clusters
    Koca, Mehmet Burak
    Sevilgen, Fatih Erdogan
    PROTEOMICS, 2024, 24 (07)
  • [25] Single-cell genomics reveals neuron subtype vulnerability in multiple sclerosis
    Schirmer, L.
    Velmeshev, D.
    Holmqvist, S.
    Kaufmann, M.
    Werneburg, S.
    Jung, D.
    Vistnes, S.
    Stockley, J.
    Young, A.
    Steindel, M.
    Tung, B.
    Goyal, N.
    Bhaduri, A.
    Mayer, S.
    Engler, J. B.
    Bayraktar, O.
    Franklin, R.
    Haeussler, M.
    Reynolds, R.
    Schafer, D.
    Friese, M.
    Shiow, L.
    Kriegstein, A.
    Rowitch, D.
    MULTIPLE SCLEROSIS JOURNAL, 2019, 25 : 673 - 673
  • [26] Integration of massive single-cell datasets
    Lin Tang
    Nature Methods, 2021, 18 : 595 - 595
  • [27] FixNCut: single-cell genomics through reversible tissue fixation and dissociation
    Laura Jiménez-Gracia
    Domenica Marchese
    Juan C. Nieto
    Ginevra Caratù
    Elisa Melón-Ardanaz
    Victoria Gudiño
    Sara Roth
    Kellie Wise
    Natalie K. Ryan
    Kirk B. Jensen
    Xavier Hernando-Momblona
    Joana P. Bernardes
    Florian Tran
    Laura Katharina Sievers
    Stefan Schreiber
    Maarten van den Berge
    Tessa Kole
    Petra L. van der Velde
    Martijn C. Nawijn
    Philip Rosenstiel
    Eduard Batlle
    Lisa M. Butler
    Ian A. Parish
    Jasmine Plummer
    Ivo Gut
    Azucena Salas
    Holger Heyn
    Luciano G. Martelotto
    Genome Biology, 25
  • [28] Jointly defining cell types from multiple single-cell datasets using LIGER
    Liu, Jialin
    Gao, Chao
    Sodicoff, Joshua
    Kozareva, Velina
    Macosko, Evan Z.
    Welch, Joshua D.
    NATURE PROTOCOLS, 2020, 15 (11) : 3632 - 3662
  • [29] FixNCut: single-cell genomics through reversible tissue fixation and dissociation
    Jimenez-Gracia, Laura
    Marchese, Domenica
    Nieto, Juan C.
    Caratu, Ginevra
    Melon-Ardanaz, Elisa
    Gudino, Victoria
    Roth, Sara
    Wise, Kellie
    Ryan, Natalie K.
    Jensen, Kirk B.
    Hernando-Momblona, Xavier
    Bernardes, Joana P.
    Tran, Florian
    Sievers, Laura Katharina
    Schreiber, Stefan
    van den Berge, Maarten
    Kole, Tessa
    van der Velde, Petra L.
    Nawijn, Martijn C.
    Rosenstiel, Philip
    Batlle, Eduard
    Butler, Lisa M.
    Parish, Ian A.
    Plummer, Jasmine
    Gut, Ivo
    Salas, Azucena
    Heyn, Holger
    Martelotto, Luciano G.
    GENOME BIOLOGY, 2024, 25 (01)
  • [30] Jointly defining cell types from multiple single-cell datasets using LIGER
    Jialin Liu
    Chao Gao
    Joshua Sodicoff
    Velina Kozareva
    Evan Z. Macosko
    Joshua D. Welch
    Nature Protocols, 2020, 15 : 3632 - 3662