Effect of the Injection Pressure on Enhancing Oil Recovery in Shale Cores during the CO2 Huff-n-Puff Process When It Is above and below the Minimum Miscibility Pressure

被引:89
|
作者
Li, Lei [1 ]
Zhang, Yao [1 ]
Sheng, James J. [1 ,2 ]
机构
[1] Texas Tech Univ, Dept Petr Engn, Lubbock, TX 79409 USA
[2] Southwest Petr Univ, Chengdu 610500, Sichuan, Peoples R China
关键词
GAS; RESERVOIRS; EOR; SIMULATION; LIVE;
D O I
10.1021/acs.energyfuels.7b00031
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In CO2 injection, there is a minimum miscibility pressure (MMP) above that CO2 can be miscible with oil, so that oil recovery will be high. This paper is to investigate the effect of the injection pressure on enhanced oil recovery in shale oil cores under huff-n-puff CO2 injection, when the pressure is above, and below the MMP. We first estimated the MMP for a Wolfcamp oil using slimtube tests. The slimtube test results showed that the estimated MMP for the CO2-Wolfcamp crude oil system was about 1620 psi at 104 degrees F. After that, we conducted 15 CO2 huff-n-puff experiments using three different Wolfcamp shale cores at pressures below and above the MMP: These pressures were 1200, 1600, 1800, 2000, and 2400 psi. Each huff-n-puff test has 7 cycles. The huff-n-puff experiments for three cores showed that, below the MMP, the injection pressure had a significant effect on enhancing oil recovery. Higher than the MMP, the increased pressure further increased the oil recovery until the injection pressure was about 200 psi higher than the MMP. In the extremely low-permeability shale oil cores, additional pressure is needed to push gas into the deeper core to be miscible with the crude oil inside the core. The results indicated that, to have a high oil recovery in shale oil reservoirsduring the CO2 huff-n-puff process, the injection pressure should be higher (at least 200 psi in this case) than the MMP estimated from slimtube tests.
引用
下载
收藏
页码:3856 / 3867
页数:12
相关论文
共 50 条
  • [1] Diffusion Effect on Shale Oil Recovery by CO2 Huff-n-Puff
    Peng, Zesen
    Sheng, J.
    ENERGY & FUELS, 2023, 37 (04) : 2774 - 2790
  • [2] Molecular insight into minimum miscibility pressure estimation of shale oil/CO2 in organic nanopores using CO2 huff-n-puff
    Sun, Qian
    Bhusal, Aabiskar
    Zhang, Na
    Adhikari, Kapil
    CHEMICAL ENGINEERING SCIENCE, 2023, 280
  • [3] Geochemical insights for CO2 huff-n-puff process in shale oil reservoirs
    Chen, Yongqiang
    Sari, Ahmad
    Zeng, Lingping
    Saeedi, Ali
    Xie, Quan
    JOURNAL OF MOLECULAR LIQUIDS, 2020, 307
  • [4] Experimental investigation of CO2 huff-n-puff process for enhancing oil recovery in tight reservoirs
    Pu, Wanfen
    Wei, Bing
    Jin, Fayang
    Li, Yibo
    Jia, Hu
    Liu, Penggang
    Tang, Zhijuan
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2016, 111 : 269 - 276
  • [5] Research on Mechanism and Effect of Enhancing Gas Recovery by CO2 Huff-n-Puff in Shale Gas Reservoir
    Liu, Jiawei
    Xie, Mengke
    Liu, Dongchen
    Cao, Lieyan
    Xie, Shengyang
    Chang, Ying
    Zhang, Jian
    Yang, Xuefeng
    ACS OMEGA, 2024, 9 (30): : 33111 - 33118
  • [6] Experimental and Numerical Study on CO2 Sweep Volume during CO2 Huff-n-Puff Enhanced Oil Recovery Process in Shale Oil Reservoirs
    Li, Lei
    Su, Yuliang
    Sheng, James J.
    Hao, Yongmao
    Wang, Wendong
    Lv, Yuting
    Zhao, Qingmin
    Wang, Haitao
    ENERGY & FUELS, 2019, 33 (05) : 4017 - 4032
  • [7] Numerical Study on the Enhanced Oil Recovery by CO2 Huff-n-Puff in Shale Volatile Oil Formations
    Zheng, Aiwei
    Lu, Wentao
    Zhang, Rupeng
    Sun, Hai
    ENERGIES, 2024, 17 (19)
  • [8] Quantitative Evaluation of Shale-Oil Recovery during CO2 Huff-n-Puff at Different Pore Scales
    Gao, Yuan
    Li, Qi
    He, Xiaoming
    Yu, Haitang
    Wang, Yong
    ENERGY & FUELS, 2021, 35 (20) : 16607 - 16616
  • [9] The Supercritical CO2 Huff-n-puff Experiment of Shale Oil Utilizing Isopropanol
    Shang, Shengxiang
    Dong, Mingzhe
    Gong, Houjian
    2017 3RD INTERNATIONAL CONFERENCE ON ENVIRONMENTAL SCIENCE AND MATERIAL APPLICATION (ESMA2017), VOLS 1-4, 2018, 108
  • [10] CO2 huff-n-puff process to enhance heavy oil recovery and CO2 storage: An integration study
    Zhou, Xiang
    Li, Xiuluan
    Shen, Dehuang
    Shi, Lanxiang
    Zhang, Zhien
    Sun, Xinge
    Jiang, Qi
    ENERGY, 2022, 239