Diffusion Effect on Shale Oil Recovery by CO2 Huff-n-Puff

被引:11
|
作者
Peng, Zesen [1 ]
Sheng, J. [2 ]
机构
[1] China Univ Petr, Unconvent Petr Res Inst, Beijing 102249, Peoples R China
[2] Northeast Petr Univ, Daqing 163318, Peoples R China
关键词
POROUS-MEDIA; GAS; COEFFICIENT; INJECTION; WATER;
D O I
10.1021/acs.energyfuels.2c03871
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The CO2 diffusion effect is an important mechanism of injected CO2 penetrating the reservoir matrix and diffusing into the oil phase during the huff-n-puff (HNP) process. However, the CO2 diffusion coefficient of shale is still uncertain under the reservoir conditions, and the contribution of diffusion to enhanced oil recovery (EOR) needs to be further explored. In this study, the CO2 diffusion coefficient of shale is determined under the simulated reservoir conditions (9-10 MPa, 90 degrees C) in the laboratory, and the determined CO2 diffusion coefficient is applied in the reservoir numerical model to evaluate the contribution of the CO2 diffusion effect to EOR in the HNP process. First, a radial constant volume diffusion (RCVD) device was built to measure the CO2 diffusion coefficient by the pressure decay method. After that, both the analytical solution and the numerical solution are used to ensure that the result is correct. Finally, a field-scale model consisting of one stage of hydraulic fracture in a shale oil reservoir is established. The effects of reservoir properties such as fracture spacing, fracture half-length, and operational properties of HNP like injection rate, injection time, and soaking time on oil recovery were discussed when the diffusion was included and excluded. The CO2 diffusion coefficient of a shale core is ranging from 1.44 x 10(-7) to 5.50 x 10(-7) cm(2)/s, and it is reasonable to be applied in the field reservoir numerical simulation model. According to simulation results, the lower fracture spacing and longer fracture half-length make more CO2 diffuse into the shale matrix, which are critical parameters, to promote the CO2 diffusion effect. When the injection rate is slow and the injection time is short, the CO2 diffusion effect in the reservoir may contribute more to EOR. A high injection rate means sufficient pressure supplement, and the CO2 diffusion effect may become relatively negligible. The soaking time may not be necessary for the EOR of HNP, but the longer soaking time will promote the contribution of CO2 diffusion to EOR, and the incremental recovery is about 0.15-0.26%.
引用
下载
收藏
页码:2774 / 2790
页数:17
相关论文
共 50 条
  • [1] Numerical Study on the Enhanced Oil Recovery by CO2 Huff-n-Puff in Shale Volatile Oil Formations
    Zheng, Aiwei
    Lu, Wentao
    Zhang, Rupeng
    Sun, Hai
    ENERGIES, 2024, 17 (19)
  • [2] The Supercritical CO2 Huff-n-puff Experiment of Shale Oil Utilizing Isopropanol
    Shang, Shengxiang
    Dong, Mingzhe
    Gong, Houjian
    2017 3RD INTERNATIONAL CONFERENCE ON ENVIRONMENTAL SCIENCE AND MATERIAL APPLICATION (ESMA2017), VOLS 1-4, 2018, 108
  • [3] Geochemical insights for CO2 huff-n-puff process in shale oil reservoirs
    Chen, Yongqiang
    Sari, Ahmad
    Zeng, Lingping
    Saeedi, Ali
    Xie, Quan
    JOURNAL OF MOLECULAR LIQUIDS, 2020, 307
  • [4] Microscopic mechanism of CO2 huff-n-puff promoting shale oil mobilization in nanopores
    Yang, Yongfei
    Song, Huaisen
    Li, Yingwen
    Liu, Fugui
    Zhang, Qi
    Wang, Jinlei
    Imani, Gloire
    Zhang, Lei
    Sun, Hai
    Zhong, Junjie
    Zhang, Kai
    Yao, Jun
    FUEL, 2024, 371
  • [5] NMR Evaluation of Shale Oil Mobility: Combined Pyrolysis and CO2 Huff-N-Puff
    Sun, Jianmeng
    Yao, Yibo
    Sun, Fujing
    Su, Junlei
    Lu, Jing
    Liu, Kun
    Chi, Peng
    Applied Sciences (Switzerland), 2024, 14 (23):
  • [6] Research on Mechanism and Effect of Enhancing Gas Recovery by CO2 Huff-n-Puff in Shale Gas Reservoir
    Liu, Jiawei
    Xie, Mengke
    Liu, Dongchen
    Cao, Lieyan
    Xie, Shengyang
    Chang, Ying
    Zhang, Jian
    Yang, Xuefeng
    ACS OMEGA, 2024, 9 (30): : 33111 - 33118
  • [7] Huff-n-Puff Experimental Studies of CO2 with Heavy Oil
    Shilov, Evgeny
    Cheremisin, Alexey
    Maksakov, Kirill
    Kharlanov, Sergey
    ENERGIES, 2019, 12 (22)
  • [8] Effect of CO2 Huff-n-Puff Mode with a Horizontal Well on Shale Oil Recovery: A Three-Dimensional Experimental Study
    Yao, Chuanjin
    Zhao, Jia
    Ji, Zemin
    Cao, Meiwen
    Xu, Liang
    Ma, Yuanbo
    ENERGY & FUELS, 2023, 37 (13) : 9318 - 9328
  • [9] Quantitative Evaluation of Shale-Oil Recovery during CO2 Huff-n-Puff at Different Pore Scales
    Gao, Yuan
    Li, Qi
    He, Xiaoming
    Yu, Haitang
    Wang, Yong
    ENERGY & FUELS, 2021, 35 (20) : 16607 - 16616
  • [10] Combination of a chemical blend with CO2 huff-n-puff for enhanced oil recovery in oil shales
    Zeng, Tongzhou
    Miller, Chammi S.
    Mohanty, Kishore K.
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2020, 194 (194)