Effect of the Injection Pressure on Enhancing Oil Recovery in Shale Cores during the CO2 Huff-n-Puff Process When It Is above and below the Minimum Miscibility Pressure

被引:89
|
作者
Li, Lei [1 ]
Zhang, Yao [1 ]
Sheng, James J. [1 ,2 ]
机构
[1] Texas Tech Univ, Dept Petr Engn, Lubbock, TX 79409 USA
[2] Southwest Petr Univ, Chengdu 610500, Sichuan, Peoples R China
关键词
GAS; RESERVOIRS; EOR; SIMULATION; LIVE;
D O I
10.1021/acs.energyfuels.7b00031
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In CO2 injection, there is a minimum miscibility pressure (MMP) above that CO2 can be miscible with oil, so that oil recovery will be high. This paper is to investigate the effect of the injection pressure on enhanced oil recovery in shale oil cores under huff-n-puff CO2 injection, when the pressure is above, and below the MMP. We first estimated the MMP for a Wolfcamp oil using slimtube tests. The slimtube test results showed that the estimated MMP for the CO2-Wolfcamp crude oil system was about 1620 psi at 104 degrees F. After that, we conducted 15 CO2 huff-n-puff experiments using three different Wolfcamp shale cores at pressures below and above the MMP: These pressures were 1200, 1600, 1800, 2000, and 2400 psi. Each huff-n-puff test has 7 cycles. The huff-n-puff experiments for three cores showed that, below the MMP, the injection pressure had a significant effect on enhancing oil recovery. Higher than the MMP, the increased pressure further increased the oil recovery until the injection pressure was about 200 psi higher than the MMP. In the extremely low-permeability shale oil cores, additional pressure is needed to push gas into the deeper core to be miscible with the crude oil inside the core. The results indicated that, to have a high oil recovery in shale oil reservoirsduring the CO2 huff-n-puff process, the injection pressure should be higher (at least 200 psi in this case) than the MMP estimated from slimtube tests.
引用
下载
收藏
页码:3856 / 3867
页数:12
相关论文
共 50 条
  • [31] Experimental investigation of foam-assisted N2 huff-n-puff enhanced oil recovery in fractured shale cores
    Xiong, Xiaofei
    Sheng, J. J.
    Wu, Xiaofeng
    Qin, Jianghua
    FUEL, 2022, 311
  • [32] Minimum miscibility pressure of CO2 and crude oil during CO2 injection in the reservoir
    Lashkarbolooki, Mostafa
    Eftekhari, Mohammad Javad
    Najimi, Siamak
    Ayatollahi, Shahab
    JOURNAL OF SUPERCRITICAL FLUIDS, 2017, 127 : 121 - 128
  • [33] Laboratory investigation of enhanced light-oil recovery by CO2/flue gas huff-n-puff process
    Zhang, YP
    Sayegh, SG
    Huang, S
    Dong, M
    JOURNAL OF CANADIAN PETROLEUM TECHNOLOGY, 2006, 45 (02): : 24 - 32
  • [34] Re-Fracturing vs. CO2 Huff-n-Puff Injection in a Tight Shale Reservoir for Enhancing Gas Production
    Wang, Dong
    Li, Yongming
    Wang, Bo
    Shan, Jiquan
    Dai, Libin
    FRONTIERS IN ENERGY RESEARCH, 2023, 10
  • [35] Optimization Strategy to Reduce Asphaltene Deposition-Associated Damage During CO2 Huff-n-Puff Injection in Shale
    Shen, Ziqi
    Sheng, James J.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2019, 44 (06) : 6179 - 6193
  • [36] Optimization and Analysis of CO2 Huff-n-Puff Process in Shale Oil Reservoirs Using Response Surface Methodology (RSM)
    Wang, Yinqing
    Hu, Jinghong
    Xie, Weiwei
    Zhang, Yuan
    GEOFLUIDS, 2022, 2022
  • [37] Effect of CO2 on Heavy Oil Recovery and Physical Properties in Huff-n-Puff Processes Under Reservoir Conditions
    Li, Songyan
    Li, Binfei
    Zhang, Qiliang
    Li, Zhaomin
    Yang, Daoyong
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2018, 140 (07):
  • [38] Study on the mechanism of CO2 huff-n-puff enhanced oil recovery and storage in shale porous media considering heterogeneous structure
    Zhang, Dian
    Li, Lei
    Wang, Han
    Su, Yuliang
    Zhang, Xue
    Zheng, Naiyuan
    Huang, Zhaoxue
    Yao, Chuanjin
    PHYSICS OF FLUIDS, 2024, 36 (07)
  • [39] Investigating phase dynamics of reservoir fluids in CO2 huff-n-puff enhanced oil recovery
    Wang, Zhenyuan
    Lu, Haiwei
    Zhao, Chuanfeng
    Zhu, Enze
    GEOENERGY SCIENCE AND ENGINEERING, 2024, 238
  • [40] LOWER LIMITS OF COUPLING PHYSICAL PROPERTIES OF SHALE OIL RESERVOIRS FOR THE APPLICATION OF CO2 HUFF-N-PUFF
    Wang, Peng
    Huang, Shijun
    Zhao, Fenglan
    ENERGY PRODUCTION AND MANAGEMENT IN THE 21ST CENTURY V: The Quest for Sustainable Energy, 2022, 255 : 3 - 13