The Rothberger property on Cp(X, 2)

被引:2
|
作者
Bernal-Santos, Daniel [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Fac Ciencias, Dept Matemat, Mexico City 04510, DF, Mexico
关键词
Function spaces; Lindelof; Menger; Hurewicz; Rothberger; Sokolov; Corson; Simple space; Generalized ordered space; Psi-space;
D O I
10.1016/j.topol.2015.09.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we analyze the Rothberger property on C-p(X, 2). A space X is said to have the Rothberger property (or simply X is Rothberger) if for every sequence < U-n : n is an element of omega > of open covers of X, there exists U-n is an element of U-n for each n is an element of omega co such that X = boolean OR U-n is an element of omega(n). We show the following: (1) if C-p(X, 2) is Rothberger, then X is pseudocompact; (2) for every pseudocompact Sokolov space X with t* (X) <= omega, C-p(X, 2) is Rothberger; and (3) assuming CH (the continuum hypothesis) there is a maximal almost disjoint family A for which the space C-p (Psi(A), 2) is Rothberger. Moreover, we characterize the Rothberger property on C-p(L, 2) when L is a GO-space. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:106 / 119
页数:14
相关论文
共 50 条
  • [41] A property of the determinant of a 2 x 2 tensor relevant to magnetotellurics
    Lilley, Frederick E. M.
    Phillips, Christopher J. E.
    GEOPHYSICS, 2018, 83 (04) : A59 - A64
  • [42] Covering Properties of Cp (X) and Ck (X)
    Ferrando, J. C.
    Lopez-Pellicer, M.
    FILOMAT, 2020, 34 (11) : 3575 - 3599
  • [43] Small diagonal of X and calibers of Cp(X)
    Tkachuk, V. V.
    TOPOLOGY AND ITS APPLICATIONS, 2019, 251 : 10 - 17
  • [44] A generalization of the equality p(X) = a(Cp(X))
    Vural, Cetin
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2006, 12 (01): : 81 - 84
  • [45] Domain representability of CP(X)
    Lubbock, Harold Bennett
    Lutzer, David
    FUNDAMENTA MATHEMATICAE, 2008, 200 (02) : 185 - 199
  • [46] Cp(X) for Hattori spaces
    Acosta, Elmer Enrique Tovar
    TOPOLOGY AND ITS APPLICATIONS, 2024, 345
  • [47] Distinguished Cp(X) spaces
    Ferrando, J. C.
    Kakol, J.
    Leiderman, A.
    Saxon, S. A.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (01)
  • [48] On the Cech number of CP(X)
    Okunev, O
    Tamariz-Mascarúa, A
    TOPOLOGY AND ITS APPLICATIONS, 2004, 137 (1-3) : 237 - 249
  • [50] On the Depth of Modular Invariant Rings for the Groups Cp x Cp
    Elmer, Jonathan
    Fleischmann, Peter
    SYMMETRY AND SPACES: IN HONOR OF GERRY SCHWARZ, 2010, 278 : 45 - +