The Rothberger property on Cp(X, 2)

被引:2
|
作者
Bernal-Santos, Daniel [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Fac Ciencias, Dept Matemat, Mexico City 04510, DF, Mexico
关键词
Function spaces; Lindelof; Menger; Hurewicz; Rothberger; Sokolov; Corson; Simple space; Generalized ordered space; Psi-space;
D O I
10.1016/j.topol.2015.09.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we analyze the Rothberger property on C-p(X, 2). A space X is said to have the Rothberger property (or simply X is Rothberger) if for every sequence < U-n : n is an element of omega > of open covers of X, there exists U-n is an element of U-n for each n is an element of omega co such that X = boolean OR U-n is an element of omega(n). We show the following: (1) if C-p(X, 2) is Rothberger, then X is pseudocompact; (2) for every pseudocompact Sokolov space X with t* (X) <= omega, C-p(X, 2) is Rothberger; and (3) assuming CH (the continuum hypothesis) there is a maximal almost disjoint family A for which the space C-p (Psi(A), 2) is Rothberger. Moreover, we characterize the Rothberger property on C-p(L, 2) when L is a GO-space. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:106 / 119
页数:14
相关论文
共 50 条
  • [21] Two properties of Cp(X) weaker than the Frechet Urysohn property
    Sakai, Masami
    TOPOLOGY AND ITS APPLICATIONS, 2006, 153 (15) : 2795 - 2804
  • [22] UNITS OF Z(Cp x C2) AND Z(Cp x C2 x C2)
    Ferraz, Raul Antonio
    Marcuz, Renata
    COMMUNICATIONS IN ALGEBRA, 2016, 44 (02) : 851 - 872
  • [23] On K2 of Fp [Cp2 x Cp2]
    Chen, Hong
    Gao, Yubin
    Tang, Guoping
    ALGEBRA COLLOQUIUM, 2013, 20 (04) : 681 - 688
  • [24] About the properties of spaces Cp(X) close to Frechet-Urysohn property
    Badmaev, Oleg O.
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2024, (87): : 5 - 10
  • [25] SYNTHESIS AND STRUCTURE OF CP2ZRX2 AND [CP2ZR(X)(H2O)2]+X- (X = TOLUENESULFONATE)
    LASSER, W
    THEWALT, U
    JOURNAL OF ORGANOMETALLIC CHEMISTRY, 1986, 302 (02) : 201 - 210
  • [26] THE SMALLEST SUBRING OF THE RING CP(CP(X)), CONTAINING X-UNION(1), IS EVERYWHERE DENSE IN CP(CP(X))
    TKACHUK, VV
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1987, (01): : 20 - 23
  • [27] The integer cp-rank of 2 x 2 matrices
    Laffey, Thomas
    Smigoc, Helena
    SPECIAL MATRICES, 2019, 7 (01): : 272 - 275
  • [28] An alternative proof for the fixed point property of CP2n
    Taghavi, Ali
    EXPOSITIONES MATHEMATICAE, 2015, 33 (01) : 105 - 107
  • [29] A characterizing property of CP-groups
    A. A. Buturlakin
    R. Shen
    W. Shi
    Siberian Mathematical Journal, 2017, 58 : 405 - 407
  • [30] A characterizing property of CP-groups
    Buturlakin, A. A.
    Shen, R.
    Shi, W.
    SIBERIAN MATHEMATICAL JOURNAL, 2017, 58 (03) : 405 - 407