The Rothberger property on Cp(X, 2)

被引:2
|
作者
Bernal-Santos, Daniel [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Fac Ciencias, Dept Matemat, Mexico City 04510, DF, Mexico
关键词
Function spaces; Lindelof; Menger; Hurewicz; Rothberger; Sokolov; Corson; Simple space; Generalized ordered space; Psi-space;
D O I
10.1016/j.topol.2015.09.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we analyze the Rothberger property on C-p(X, 2). A space X is said to have the Rothberger property (or simply X is Rothberger) if for every sequence < U-n : n is an element of omega > of open covers of X, there exists U-n is an element of U-n for each n is an element of omega co such that X = boolean OR U-n is an element of omega(n). We show the following: (1) if C-p(X, 2) is Rothberger, then X is pseudocompact; (2) for every pseudocompact Sokolov space X with t* (X) <= omega, C-p(X, 2) is Rothberger; and (3) assuming CH (the continuum hypothesis) there is a maximal almost disjoint family A for which the space C-p (Psi(A), 2) is Rothberger. Moreover, we characterize the Rothberger property on C-p(L, 2) when L is a GO-space. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:106 / 119
页数:14
相关论文
共 50 条
  • [1] The Menger property on Cp(X, 2)
    Bernal-Santos, D.
    Tamariz-Mascarua, A.
    TOPOLOGY AND ITS APPLICATIONS, 2015, 183 : 110 - 126
  • [2] Rothberger property and related games
    Bhardwaj, Manoj
    Osipov, Alexander, V
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2022, 101 (1-2): : 1 - 14
  • [3] Remarks on the Menger property of Cp(X, 2)
    Sakai, Masami
    TOPOLOGY AND ITS APPLICATIONS, 2019, 258 : 32 - 46
  • [4] The Rothberger property on C-p(Psi(A), 2)
    Bernal-Santos, Daniel
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2016, 57 (01): : 83 - 88
  • [5] Rothberger's property and partition relations
    Scheepers, M
    JOURNAL OF SYMBOLIC LOGIC, 1997, 62 (03) : 976 - 980
  • [6] Star versions of the Rothberger property on hyperspaces
    Casas-de la Rosa, Javier
    Martinez-Ruiz, Ivan
    Ramirez-Paramo, Alejandro
    TOPOLOGY AND ITS APPLICATIONS, 2020, 283
  • [7] The Ramsey property for Cp(X)
    M. Sakai
    Acta Mathematica Hungarica, 2010, 128 : 96 - 105
  • [8] The Ramsey property for Cp(X)
    Sakai, M.
    ACTA MATHEMATICA HUNGARICA, 2010, 128 (1-2) : 96 - 105
  • [9] A note on the Menger (Rothberger) property and topological games
    Peng, Liang-Xue
    Shen, Zhanchao
    TOPOLOGY AND ITS APPLICATIONS, 2016, 199 : 132 - 144
  • [10] Some observations on a clopen version of the Rothberger property
    Bhardwaj, Manoj
    Osipov, Alexander V.
    CUBO-A MATHEMATICAL JOURNAL, 2023, 25 (02): : 161 - 172