Close-to-equilibrium behaviour of quadratic reaction-diffusion systems with detailed balance

被引:9
|
作者
Caceres, Maria J. [1 ]
Canizo, Jose A. [1 ]
机构
[1] Univ Granada, Dept Matemat Aplicada, E-18071 Granada, Spain
关键词
Reaction-diffusion; Global existence; Asymptotic behaviour; GLOBAL CLASSICAL-SOLUTIONS; EXPONENTIAL DECAY; ENTROPY METHODS; EXISTENCE; REGULARITY;
D O I
10.1016/j.na.2017.03.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study general quadratic reaction diffusion systems with detailed balance, in space dimension d <= 4. We show that close-to-equilibrium solutions (in an L-2 sense) are regular for all times, and that they relax to equilibrium exponentially in a strong sense. That is: all detailed balance equilibria are exponentially asymptotically stable in all L-P norms, at least in dimension d <= 4. The results are given in detail for the four-species reaction diffusion system, where the involved constants can be estimated explicitly. The main novelty is the regularity result and exponential relaxation in L-P norms for p > 1, which up to our knowledge is new in dimensions 3 and 4. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:62 / 84
页数:23
相关论文
共 50 条
  • [41] Fluctuation in nonextensive reaction-diffusion systems
    Wu, Junlin
    Chen, Huaijun
    PHYSICA SCRIPTA, 2007, 75 (05) : 722 - 725
  • [42] ON NONLINEAR COUPLED REACTION-DIFFUSION SYSTEMS
    MEI, M
    ACTA MATHEMATICA SCIENTIA, 1989, 9 (02) : 163 - 174
  • [43] Global optimization by reaction-diffusion systems
    Mikhailov, A.S.
    Tereshko, V.M.
    Proceedings of the International Conference on Artificial Neural Networks, 1991,
  • [44] Reaction-diffusion systems for hypothesis propagation
    Kubota, T
    Espinal, F
    15TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, PROCEEDINGS: IMAGE, SPEECH AND SIGNAL PROCESSING, 2000, : 543 - 546
  • [45] Controllability of shadow reaction-diffusion systems
    Hernandez-Santamaria, Victor
    Zuazua, Enrique
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (07) : 3781 - 3818
  • [46] Turbulent transport in reaction-diffusion systems
    Il'yn, A. S.
    Sirota, V. A.
    Zybin, K. P.
    PHYSICAL REVIEW E, 2019, 99 (05)
  • [47] Distribution in flowing reaction-diffusion systems
    Kamimura, Atsushi
    Herrmann, Hans J.
    Ito, Nobuyasu
    PHYSICAL REVIEW E, 2009, 80 (06):
  • [48] Localized patterns in reaction-diffusion systems
    Vanag, Vladimir K.
    Epstein, Irving R.
    CHAOS, 2007, 17 (03)
  • [49] Reaction-Diffusion Systems and Nonlinear Waves
    R. K. Saxena
    A. M. Mathai
    H. J. Haubold
    Astrophysics and Space Science, 2006, 305 : 297 - 303
  • [50] Spirals and targets in reaction-diffusion systems
    Bhattacharyay, A
    PHYSICAL REVIEW E, 2001, 64 (01): : 4 - 016113