Close-to-equilibrium behaviour of quadratic reaction-diffusion systems with detailed balance

被引:9
|
作者
Caceres, Maria J. [1 ]
Canizo, Jose A. [1 ]
机构
[1] Univ Granada, Dept Matemat Aplicada, E-18071 Granada, Spain
关键词
Reaction-diffusion; Global existence; Asymptotic behaviour; GLOBAL CLASSICAL-SOLUTIONS; EXPONENTIAL DECAY; ENTROPY METHODS; EXISTENCE; REGULARITY;
D O I
10.1016/j.na.2017.03.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study general quadratic reaction diffusion systems with detailed balance, in space dimension d <= 4. We show that close-to-equilibrium solutions (in an L-2 sense) are regular for all times, and that they relax to equilibrium exponentially in a strong sense. That is: all detailed balance equilibria are exponentially asymptotically stable in all L-P norms, at least in dimension d <= 4. The results are given in detail for the four-species reaction diffusion system, where the involved constants can be estimated explicitly. The main novelty is the regularity result and exponential relaxation in L-P norms for p > 1, which up to our knowledge is new in dimensions 3 and 4. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:62 / 84
页数:23
相关论文
共 50 条
  • [21] Convergence to equilibrium of renormalised solutions to nonlinear chemical reaction-diffusion systems
    Fellner, Klemens
    Bao Quoc Tang
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (03):
  • [22] Asymptotic behaviour in a reaction-diffusion system
    Huang, SX
    Xie, CH
    ACTA MATHEMATICA SCIENTIA, 1998, 18 (01) : 57 - 62
  • [23] REGULARITY OF GLOBAL ATTRACTORS FOR REACTION-DIFFUSION SYSTEMS WITH NO MORE THAN QUADRATIC GROWTH
    Kapustyan, Oleksiy V.
    Kasyanov, Pavlo O.
    Valero, Jose
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (05): : 1899 - 1908
  • [24] Resilience in reaction-diffusion systems
    van Vuuren, JH
    IMA JOURNAL OF APPLIED MATHEMATICS, 1999, 63 (02) : 179 - 197
  • [25] Multispecies reaction-diffusion systems
    Aghamohammadi, A
    Fatollahi, AH
    Khorrami, M
    Shariati, A
    PHYSICAL REVIEW E, 2000, 62 (04): : 4642 - 4649
  • [26] SEGREGATION IN REACTION-DIFFUSION SYSTEMS
    TAITELBAUM, H
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1993, 200 (1-4) : 155 - 164
  • [27] REPELLERS IN REACTION-DIFFUSION SYSTEMS
    HUTSON, V
    MORAN, W
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1987, 17 (02) : 301 - 314
  • [28] Detailed balance in non-equilibrium systems
    Barra, F
    Clerc, M
    Tirapegui, E
    DYNAMICS AND STABILITY OF SYSTEMS, 1997, 12 (01): : 61 - 70
  • [29] Local Equilibrium Assumption and Reaction-diffusion Processes
    Sheng, R.
    ACTA PHYSICO-CHIMICA SINICA, 1994, 10 (01) : 38 - 43