Close-to-equilibrium behaviour of quadratic reaction-diffusion systems with detailed balance

被引:9
|
作者
Caceres, Maria J. [1 ]
Canizo, Jose A. [1 ]
机构
[1] Univ Granada, Dept Matemat Aplicada, E-18071 Granada, Spain
关键词
Reaction-diffusion; Global existence; Asymptotic behaviour; GLOBAL CLASSICAL-SOLUTIONS; EXPONENTIAL DECAY; ENTROPY METHODS; EXISTENCE; REGULARITY;
D O I
10.1016/j.na.2017.03.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study general quadratic reaction diffusion systems with detailed balance, in space dimension d <= 4. We show that close-to-equilibrium solutions (in an L-2 sense) are regular for all times, and that they relax to equilibrium exponentially in a strong sense. That is: all detailed balance equilibria are exponentially asymptotically stable in all L-P norms, at least in dimension d <= 4. The results are given in detail for the four-species reaction diffusion system, where the involved constants can be estimated explicitly. The main novelty is the regularity result and exponential relaxation in L-P norms for p > 1, which up to our knowledge is new in dimensions 3 and 4. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:62 / 84
页数:23
相关论文
共 50 条
  • [1] Close-to-equilibrium regularity for reaction-diffusion systems
    Bao Quoc Tang
    JOURNAL OF EVOLUTION EQUATIONS, 2018, 18 (02) : 845 - 869
  • [2] Close-to-equilibrium regularity for reaction–diffusion systems
    Bao Quoc Tang
    Journal of Evolution Equations, 2018, 18 : 845 - 869
  • [3] Explicit exponential convergence to equilibrium for nonlinear reaction-diffusion systems with detailed balance condition
    Fellner, Klemens
    Bao Quoc Tang
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 159 : 145 - 180
  • [4] Global existence for quadratic systems of reaction-diffusion
    Desvillettes, Laurent
    Fellner, Klemens
    Pierre, Michel
    Vovelle, Julien
    ADVANCED NONLINEAR STUDIES, 2007, 7 (03) : 491 - 511
  • [5] THE ENTROPY METHOD FOR REACTION-DIFFUSION SYSTEMS WITHOUT DETAILED BALANCE: FIRST ORDER CHEMICAL REACTION NETWORKS
    Fellner, Klemens
    Prager, Wolfang
    Tang, Bao Q.
    KINETIC AND RELATED MODELS, 2017, 10 (04) : 1055 - 1087
  • [6] Global existence for degenerate quadratic reaction-diffusion systems
    Pierre, M.
    Texier-Picard, R.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (05): : 1553 - 1568
  • [7] Stabilization to a positive equilibrium for some reaction-diffusion systems
    Guo, Jong-Shenq
    Shimojo, Masahiko
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 62 (62)
  • [8] On systems of reaction-diffusion equations with a balance law: The sequel
    Kirane, Mokhtar
    Alsaedi, Ahmed
    Ahmad, Bashir
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (05) : 1244 - 1260
  • [9] Global regularity and convergence to equilibrium of reaction-diffusion systems with nonlinear diffusion
    Fellner, Klemens
    Latos, Evangelos
    Bao Quoc Tang
    JOURNAL OF EVOLUTION EQUATIONS, 2020, 20 (03) : 957 - 1003
  • [10] Reaction-diffusion systems with prescribed large time behaviour
    Vakulenko, SA
    ANNALES DE L INSTITUT HENRI POINCARE-PHYSIQUE THEORIQUE, 1997, 66 (04): : 373 - 410