Geometric properties and sections for certain subclasses of harmonic mappings

被引:11
|
作者
Liu, Ming-Sheng [1 ]
Yang, Li-Mei [1 ]
机构
[1] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2019年 / 190卷 / 02期
关键词
Harmonic mapping; Coefficient bound; Growth theorem; Partial sum or section; Harmonic convolution; STARLIKE;
D O I
10.1007/s00605-018-1240-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G(H)(k)(alpha; r) denote the subclasses of normalized harmonic mappings f = h+g in the unit disk D satisfying the condition Re in where and alpha >= 0. In this paper, we first provide the sharp coefficient estimates and the sharp growth theorems for harmonic mappings in the class G(H)(k)(alpha; 1). Next, we derive the geometric properties of harmonic mappings in G(H)(1)(alpha; 1). Then we study several properties of the sections of f is an element of G(H)k(alpha; 1). Finally, we show that if f is an element of P-H(0) (alpha) and F is an element of G(H)(1)(beta; 1), then the harmonic convolution f * F is univalent and close-to-convex harmonic function in the unit disk for alpha is an element of (1/2, 1), beta > 0.
引用
收藏
页码:353 / 387
页数:35
相关论文
共 50 条
  • [1] Geometric properties and sections for certain subclasses of harmonic mappings
    Ming-Sheng Liu
    Li-Mei Yang
    [J]. Monatshefte für Mathematik, 2019, 190 : 353 - 387
  • [2] Bohr phenomenon for certain subclasses of harmonic mappings
    Allu, Vasudevarao
    Halder, Himadri
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 173
  • [3] ON CERTAIN SUBCLASSES OF UNIVALENT p-HARMONIC MAPPINGS
    Qiao, J.
    Chen, J.
    Shi, M.
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2015, 41 (02) : 429 - 451
  • [4] Geometric Properties of Certain Subclass of Close-to-Convex Harmonic Mappings
    Priyabrat Gochhayat
    Sima Mahata
    [J]. Vietnam Journal of Mathematics, 2024, 52 : 175 - 195
  • [5] Geometric Properties of Certain Subclass of Close-to-Convex Harmonic Mappings
    Gochhayat, Priyabrat
    Mahata, Sima
    [J]. VIETNAM JOURNAL OF MATHEMATICS, 2024, 52 (01) : 175 - 195
  • [6] On the Coefficients of Certain Subclasses of Harmonic Univalent Mappings with Nonzero Pole
    Bhowmik, Bappaditya
    Majee, Santana
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2021, 52 (04): : 1041 - 1053
  • [7] On the Coefficients of Certain Subclasses of Harmonic Univalent Mappings with Nonzero Pole
    Bappaditya Bhowmik
    Santana Majee
    [J]. Bulletin of the Brazilian Mathematical Society, New Series, 2021, 52 : 1041 - 1053
  • [8] GEOMETRIC BOUNDS FOR THE NUMBER OF CERTAIN HARMONIC-MAPPINGS
    ADACHI, T
    SUNADA, T
    [J]. LECTURE NOTES IN MATHEMATICS, 1984, 1090 : 24 - 36
  • [9] On certain geometric properties of polyharmonic mappings
    Li, Peijin
    Khuri, S. A.
    Wang, Xiantao
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 434 (02) : 1462 - 1473
  • [10] ON SOME SUBCLASSES OF HARMONIC MAPPINGS
    Ghosh, Nirupam
    Allu, Vasudevarao
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2020, 101 (01) : 130 - 140