Bohr phenomenon for certain subclasses of harmonic mappings

被引:15
|
作者
Allu, Vasudevarao [1 ]
Halder, Himadri [1 ]
机构
[1] Indian Inst Technol Bhubaneswar, Sch Basic Sci, Bhubaneswar 752050, Odisha, India
来源
关键词
Harmonic functions; Close-to-convex functions; Coefficient estimate; Growth theorem; Bohr radius; SUBORDINATING FAMILIES; ANALYTIC-FUNCTIONS; UNIVALENT; SECTIONS; THEOREM; RADIUS; VARIABILITY; INJECTIVITY;
D O I
10.1016/j.bulsci.2021.103053
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Bohr phenomenon for analytic functions of the form f(z) = Sigma(infinity)(n=0) a(n)z(n), first introduced by Harald Bohr in 1914, deals with finding the largest radius r(f), 0 < r(f) < 1, such that the inequality Sigma(infinity)(n=0) vertical bar a(n)z(n)vertical bar <= 1 holds whenever the inequality vertical bar f(z)vertical bar <= 1 holds in the unit disk D = {z is an element of C : vertical bar z vertical bar < 1}. The exact value of this largest radius known as Bohr radius, which has been established to be r(f) = 1/3. The Bohr phenomenon [1] for harmonic functions f of the form f(z) = h(z) + <(g(z))over bar>, where h(z) = Sigma(infinity)(n=0) a(n)z(n) and g(z) = Sigma(infinity)(n=1) b(n)z(n) is to find the largest radius r(f), 0 < r(f) < 1 'such that Sigma(infinity)(n=1) (vertical bar a(n)vertical bar + vertical bar b(n)vertical bar vertical bar z vertical bar(n) <= d(f(0), partial derivative f(D)) holds for vertical bar z vertical bar <= r(f), here d(f(0), partial derivative f(D)) denotes the Euclidean distance between f(0) and the boundary of f(D). In this paper, we investigate the Bohr radius for several classes of harmonic functions in the unit disk D. (C) 2021 Elsevier Masson SAS. All rights reserved.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Bohr phenomenon for certain subclass of harmonic mappings
    Meher, Akash
    Gochhayat, Priyabrat
    [J]. JOURNAL OF ANALYSIS, 2024,
  • [2] BOHR PHENOMENON FOR CERTAIN CLASSES OF HARMONIC MAPPINGS
    Ahamed, Molla Basir
    Allu, Vasudevarao
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2022, 52 (04) : 1205 - 1225
  • [3] The Bohr inequality for certain harmonic mappings
    Allu, Vasudevarao
    Halder, Himadri
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2022, 33 (03): : 581 - 597
  • [4] Bohr Inequalities for Certain Classes of Harmonic Mappings
    Ahamed, Molla Basir
    Ahammed, Sabir
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (01)
  • [5] Bohr Inequalities for Certain Classes of Harmonic Mappings
    Molla Basir Ahamed
    Sabir Ahammed
    [J]. Mediterranean Journal of Mathematics, 2024, 21
  • [6] On Bohr's inequality for special subclasses of stable starlike harmonic mappings
    Jin, Wei
    Liu, Zhihong
    Hu, Qian
    Zhang, Wenbo
    [J]. OPEN MATHEMATICS, 2023, 21 (01):
  • [7] ON CERTAIN SUBCLASSES OF UNIVALENT p-HARMONIC MAPPINGS
    Qiao, J.
    Chen, J.
    Shi, M.
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2015, 41 (02) : 429 - 451
  • [8] Geometric properties and sections for certain subclasses of harmonic mappings
    Liu, Ming-Sheng
    Yang, Li-Mei
    [J]. MONATSHEFTE FUR MATHEMATIK, 2019, 190 (02): : 353 - 387
  • [9] Geometric properties and sections for certain subclasses of harmonic mappings
    Ming-Sheng Liu
    Li-Mei Yang
    [J]. Monatshefte für Mathematik, 2019, 190 : 353 - 387
  • [10] BOHR PHENOMENON FOR THE SPECIAL FAMILY OF ANALYTIC FUNCTIONS AND HARMONIC MAPPINGS
    Alkhaleefah, S. A.
    [J]. PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2020, 9 (03): : 3 - 13