Bohr phenomenon for certain subclasses of harmonic mappings

被引:15
|
作者
Allu, Vasudevarao [1 ]
Halder, Himadri [1 ]
机构
[1] Indian Inst Technol Bhubaneswar, Sch Basic Sci, Bhubaneswar 752050, Odisha, India
来源
关键词
Harmonic functions; Close-to-convex functions; Coefficient estimate; Growth theorem; Bohr radius; SUBORDINATING FAMILIES; ANALYTIC-FUNCTIONS; UNIVALENT; SECTIONS; THEOREM; RADIUS; VARIABILITY; INJECTIVITY;
D O I
10.1016/j.bulsci.2021.103053
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Bohr phenomenon for analytic functions of the form f(z) = Sigma(infinity)(n=0) a(n)z(n), first introduced by Harald Bohr in 1914, deals with finding the largest radius r(f), 0 < r(f) < 1, such that the inequality Sigma(infinity)(n=0) vertical bar a(n)z(n)vertical bar <= 1 holds whenever the inequality vertical bar f(z)vertical bar <= 1 holds in the unit disk D = {z is an element of C : vertical bar z vertical bar < 1}. The exact value of this largest radius known as Bohr radius, which has been established to be r(f) = 1/3. The Bohr phenomenon [1] for harmonic functions f of the form f(z) = h(z) + <(g(z))over bar>, where h(z) = Sigma(infinity)(n=0) a(n)z(n) and g(z) = Sigma(infinity)(n=1) b(n)z(n) is to find the largest radius r(f), 0 < r(f) < 1 'such that Sigma(infinity)(n=1) (vertical bar a(n)vertical bar + vertical bar b(n)vertical bar vertical bar z vertical bar(n) <= d(f(0), partial derivative f(D)) holds for vertical bar z vertical bar <= r(f), here d(f(0), partial derivative f(D)) denotes the Euclidean distance between f(0) and the boundary of f(D). In this paper, we investigate the Bohr radius for several classes of harmonic functions in the unit disk D. (C) 2021 Elsevier Masson SAS. All rights reserved.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] A Bohr phenomenon for α-harmonic functions
    Zhou, Lifang
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 505 (01)
  • [22] Improved Bohr inequality for harmonic mappings
    Liu, Gang
    Ponnusamy, Saminathan
    [J]. MATHEMATISCHE NACHRICHTEN, 2023, 296 (02) : 716 - 731
  • [23] Bohr-Rogosinski radius for a certain class of close-to-convex harmonic mappings
    Ahamed, Molla Basir
    Allu, Vasudevarao
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2023, 66 (03): : 1014 - 1029
  • [24] The Bohr-Rogosinski Radius for a Certain Class of Close-to-Convex Harmonic Mappings
    Ahamed, Molla Basir
    [J]. COMPUTATIONAL METHODS AND FUNCTION THEORY, 2022,
  • [25] Subclasses of harmonic mappings defined by convolution
    Ali, Rosihan M.
    Stephen, B. Adolf
    Subramanian, K. G.
    [J]. APPLIED MATHEMATICS LETTERS, 2010, 23 (10) : 1243 - 1247
  • [26] Subclasses of Harmonic Mappings Defined by Convolution
    Joshi, Santosh B.
    Shelake, Girish D.
    [J]. JOURNAL OF COMPLEX ANALYSIS, 2013,
  • [27] CONSTRUCTION OF SUBCLASSES OF UNIVALENT HARMONIC MAPPINGS
    Nagpal, Sumit
    Ravichandran, V.
    [J]. JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (03) : 567 - 592
  • [28] Bohr’s phenomenon for the classes of Quasi-subordination and K-quasiregular harmonic mappings
    Ming-Sheng Liu
    Saminathan Ponnusamy
    Jun Wang
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [29] Bohr's phenomenon for the classes of Quasi-subordination and K-quasiregular harmonic mappings
    Liu, Ming-Sheng
    Ponnusamy, Saminathan
    Wang, Jun
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (03)
  • [30] Bohr radius for locally univalent harmonic mappings
    Kayumov, Ilgiz R.
    Ponnusamy, Saminathan
    Shakirov, Nail
    [J]. MATHEMATISCHE NACHRICHTEN, 2018, 291 (11-12) : 1757 - 1768