Geometric properties and sections for certain subclasses of harmonic mappings

被引:11
|
作者
Liu, Ming-Sheng [1 ]
Yang, Li-Mei [1 ]
机构
[1] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2019年 / 190卷 / 02期
关键词
Harmonic mapping; Coefficient bound; Growth theorem; Partial sum or section; Harmonic convolution; STARLIKE;
D O I
10.1007/s00605-018-1240-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G(H)(k)(alpha; r) denote the subclasses of normalized harmonic mappings f = h+g in the unit disk D satisfying the condition Re in where and alpha >= 0. In this paper, we first provide the sharp coefficient estimates and the sharp growth theorems for harmonic mappings in the class G(H)(k)(alpha; 1). Next, we derive the geometric properties of harmonic mappings in G(H)(1)(alpha; 1). Then we study several properties of the sections of f is an element of G(H)k(alpha; 1). Finally, we show that if f is an element of P-H(0) (alpha) and F is an element of G(H)(1)(beta; 1), then the harmonic convolution f * F is univalent and close-to-convex harmonic function in the unit disk for alpha is an element of (1/2, 1), beta > 0.
引用
收藏
页码:353 / 387
页数:35
相关论文
共 50 条
  • [21] On subclasses of harmonic mappings involving Frasin operator
    Muhammad G. Khan
    Bakhtiar Ahmad
    Zabidin Salleh
    Iing Lukman
    [J]. Afrika Matematika, 2021, 32 : 1159 - 1171
  • [22] On subclasses of harmonic mappings involving Frasin operator
    Khan, Muhammad G.
    Ahmad, Bakhtiar
    Salleh, Zabidin
    Lukman, Iing
    [J]. AFRIKA MATEMATIKA, 2021, 32 (7-8) : 1159 - 1171
  • [23] Subclasses of Multivalent Harmonic Mappings Defined by Convolution
    Subramanian, K. G.
    Stephen, B. Adolf
    Lee, S. K.
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2012, 35 (03) : 717 - 726
  • [24] Sections of univalent harmonic mappings
    Ponnusamy, Saminathan
    Kaliraj, Anbareeswaran Sairam
    Starkov, Victor V.
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2017, 28 (02): : 527 - 540
  • [25] RIGIDITY OF CERTAIN HARMONIC MAPPINGS
    SUNADA, T
    [J]. INVENTIONES MATHEMATICAE, 1979, 51 (03) : 297 - 307
  • [26] Some properties of certain close-to-convex harmonic mappings
    Xiao-Yuan Wang
    Zhi-Gang Wang
    Jin-Hua Fan
    Zhen-Yong Hu
    [J]. Analysis and Mathematical Physics, 2022, 12
  • [27] Some properties of certain close-to-convex harmonic mappings
    Wang, Xiao-Yuan
    Wang, Zhi-Gang
    Fan, Jin-Hua
    Hu, Zhen-Yong
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2022, 12 (01)
  • [28] On geometric properties of certain subclasses of univalent functions defined by Noor integral operator
    Amini, E.
    Al-Omari, Shrideh
    Rahmatan, H.
    [J]. ANALYSIS-INTERNATIONAL MATHEMATICAL JOURNAL OF ANALYSIS AND ITS APPLICATIONS, 2022, 42 (04): : 251 - 259
  • [29] Certain subclasses of meromorphic harmonic starlike functions
    Ozturk, M.
    Bostanci, H.
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2008, 19 (05) : 377 - 385
  • [30] Injectivity of sections of univalent harmonic mappings
    Li, Liulan
    Ponnusamy, Saminathan
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 89 : 276 - 283