WZW-Poisson manifolds

被引:93
|
作者
Klimcík, C
Strobl, T
机构
[1] Univ Jena, Inst Theoret Phys, D-07743 Jena, Germany
[2] Inst Math Luminy, F-13288 Marseille, France
关键词
twisted Poisson manifolds; Dirac structures; controlled nonassociativity;
D O I
10.1016/S0393-0440(02)00027-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We observe that a term of the WZW-type can be added to the Lagrangian of the Poisson or sigma-model in such a way that the algebra of the first class constraints remains closed. This leads to a natural generalization of the concept of Poisson geometry. The resulting "WZW-Poisson" manifold M is characterized by a bivector Pi and by a closed three-form H such that 1/2[Pi, Pi](Schouten) = [H, Pi x Pi x Pi]. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:341 / 344
页数:4
相关论文
共 50 条
  • [21] Singular reduction of Poisson manifolds
    Ortega, JP
    Ratiu, TS
    LETTERS IN MATHEMATICAL PHYSICS, 1998, 46 (04) : 359 - 372
  • [22] Singular Reduction of Poisson Manifolds
    Juan-Pablo Ortega
    Tudor S. Ratiu
    Letters in Mathematical Physics, 1998, 46 : 359 - 372
  • [23] On Nambu-Poisson manifolds
    Nakanishi, N
    REVIEWS IN MATHEMATICAL PHYSICS, 1998, 10 (04) : 499 - 510
  • [24] SYMPLECTIC GROUPOIDS AND POISSON MANIFOLDS
    WEINSTEIN, A
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 16 (01) : 101 - 104
  • [25] Poisson manifolds and their associated stacks
    Villatoro, Joel
    LETTERS IN MATHEMATICAL PHYSICS, 2018, 108 (03) : 897 - 926
  • [26] Almost Complex Poisson Manifolds
    Luis A. Cordero
    Marisa Fernández
    Raúl Ibáñez
    Luis Ugarte
    Annals of Global Analysis and Geometry, 2000, 18 : 265 - 290
  • [27] Deformation in holomorphic Poisson manifolds
    Ji, Xiang
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2016, 49 : 277 - 286
  • [28] A Formality Theorem for Poisson Manifolds
    Gregory Ginot
    Gilles Halbout
    Letters in Mathematical Physics, 2003, 66 : 37 - 64
  • [29] POISSON MANIFOLDS AND ASSOCIATED STRUCTURES
    CORNU, P
    MONNA, G
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1987, 115 (03): : 241 - 255
  • [30] Deformation quantization of Poisson manifolds
    Kontsevich, M
    LETTERS IN MATHEMATICAL PHYSICS, 2003, 66 (03) : 157 - 216