A Formality Theorem for Poisson Manifolds

被引:0
|
作者
Gregory Ginot
Gilles Halbout
机构
[1] Université Louis Pasteur,Institut de Recherche Mathématique Avancée
[2] CNRS,undefined
来源
关键词
deformation quantization; homological methods; homotopy formulas; star-product;
D O I
暂无
中图分类号
学科分类号
摘要
Let M be a differential manifold. Using different methods, Kontsevich and Tamarkin have proved a formality theorem, which states the existence of a Lie homomorphism 'up to homotopy' between the Lie algebra of Hochschild cochains on C∞(M) and its cohomology (Γ(M, ΛTM), [−, −]S). Suppose M is a Poisson manifold equipped with a Poisson tensor π; then one can deduce from this theorem the existence of a star product \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\star$$ \end{document} on C∞(M). In this Letter we prove that the formality theorem can be extended to a Lie (and even Gerstenhaber) homomorphism 'up to homotopy' between the Lie (resp. Gerstenhaber 'up to homtoptopy') algebra of Hochschild cochains on the deformed algebra (C∞(M), *) and the Poisson complex (Γ(M, ΛTM), [π, −]S). We will first recall Tamarkin's proof and see how the formality maps can be deduced from Etingof and Kazhdan's theorem using only homotopies formulas. The formality theorem for Poisson manifolds will then follow.
引用
收藏
页码:37 / 64
页数:27
相关论文
共 50 条
  • [1] A formality theorem for Poisson manifolds
    Ginot, G
    Halbout, G
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2003, 66 (1-2) : 37 - 64
  • [2] On the Lie-formality of Poisson manifolds
    Sharygin, G.
    Talalaev, D.
    [J]. JOURNAL OF K-THEORY, 2008, 2 (02) : 361 - 384
  • [3] Formality theorem for g-manifolds
    Liao, Hsuan-Yi
    Stienon, Mathieu
    Xu, Ping
    [J]. COMPTES RENDUS MATHEMATIQUE, 2017, 355 (05) : 582 - 589
  • [4] Formality theorem for differential graded manifolds
    Liao, Hsuan-Yi
    Stienon, Mathieu
    Xu, Ping
    [J]. COMPTES RENDUS MATHEMATIQUE, 2018, 356 (01) : 27 - 43
  • [5] FORMALITY OF KOSZUL BRACKETS AND DEFORMATIONS OF HOLOMORPHIC POISSON MANIFOLDS
    Fiorenza, Domenico
    Manetti, Marco
    [J]. HOMOLOGY HOMOTOPY AND APPLICATIONS, 2012, 14 (02) : 63 - 75
  • [6] Formality of the Dolbeault complex and deformations of holomorphic Poisson manifolds
    Chen, Youming
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2022, 182
  • [7] An algebraic index theorem for Poisson manifolds
    Dolgushev, V. A.
    Rubtsov, V. N.
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2009, 633 : 77 - 113
  • [8] Liouville theorem for the nonlinear Poisson equation on manifolds
    Ma, Li
    Witt, Ingo
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 416 (02) : 800 - 804
  • [9] Poisson Action and Formality
    Didier Arnal
    Najla Dahmene
    Khaled Tounsi
    [J]. Letters in Mathematical Physics, 2007, 82 : 177 - 189
  • [10] Poisson action and formality
    Arnal, Didier
    Dahmene, Najla
    Tounsi, Khaled
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2007, 82 (2-3) : 177 - 189