Liouville theorem for the nonlinear Poisson equation on manifolds

被引:3
|
作者
Ma, Li [1 ]
Witt, Ingo [2 ]
机构
[1] Henan Normal Univ, Dept Math, Xinxiang 453007, Peoples R China
[2] Univ Gottingen, Math Inst, D-37073 Gottingen, Germany
基金
中国国家自然科学基金;
关键词
Liouville theorem; Modica type gradient estimate; Nonlinear Poisson equation;
D O I
10.1016/j.jmaa.2014.03.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, we study a Modica type gradient estimate for smooth solutions to general non-linear Poisson equation Delta(u) - f(u) = 0, in M-n, u : M-n -> R where (M, g) is a complete Riemannian manifold with bounded geometry and non-negative Ricci curvature and f is the derivative of the non-negative smooth function F(u) on R. Then we use this gradient estimate to conclude a Lionville theorem. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:800 / 804
页数:5
相关论文
共 50 条