机构:
Univ Cambridge, Dept Pure Math & Math Stat, Ctr Math Sci, Cambridge CB3 0WB, EnglandUniv Cambridge, Dept Pure Math & Math Stat, Ctr Math Sci, Cambridge CB3 0WB, England
Tyomkyn, Mykhaylo
[1
]
机构:
[1] Univ Cambridge, Dept Pure Math & Math Stat, Ctr Math Sci, Cambridge CB3 0WB, England
Bonato and Tardif [A. Bonato, C. Tardif, Mutually embeddable graphs and the tree alternative conjecture, J. Combinatorial Theory, Series B 96 (2006), 874-880] conjectured that the number of isomorphism classes of trees mutually embeddable with a given tree T is either 1 or infinite. We prove the analogue of their conjecture for rooted trees. We also make some progress towards the original conjecture for locally finite trees and state some new conjectures. (C) 2009 Elsevier B.V. All rights reserved.
机构:
Univ Maryland, Math Dept, College Pk, MD 20742 USAUniv Maryland, Math Dept, College Pk, MD 20742 USA
Cristofaro-Gardiner, Daniel
Humiliere, Vincent
论文数: 0引用数: 0
h-index: 0
机构:
Sorbonne Univ, Paris, France
Univ Paris Cite, CNRS, IMJ PRG, Paris, France
Inst Univ France, Paris, FranceUniv Maryland, Math Dept, College Pk, MD 20742 USA
Humiliere, Vincent
Seyfaddini, Sobhan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Saclay, Lab Mathemat Orsay, CNRS, UMR 8628, Orsay, FranceUniv Maryland, Math Dept, College Pk, MD 20742 USA