A proof of the rooted tree alternative conjecture

被引:13
|
作者
Tyomkyn, Mykhaylo [1 ]
机构
[1] Univ Cambridge, Dept Pure Math & Math Stat, Ctr Math Sci, Cambridge CB3 0WB, England
关键词
Infinite graphs; Trees; Graph isomomorphisms; GRAPHS;
D O I
10.1016/j.disc.2009.04.025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Bonato and Tardif [A. Bonato, C. Tardif, Mutually embeddable graphs and the tree alternative conjecture, J. Combinatorial Theory, Series B 96 (2006), 874-880] conjectured that the number of isomorphism classes of trees mutually embeddable with a given tree T is either 1 or infinite. We prove the analogue of their conjecture for rooted trees. We also make some progress towards the original conjecture for locally finite trees and state some new conjectures. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:5963 / 5967
页数:5
相关论文
共 50 条
  • [21] Proof of a conjecture of Cooper
    Ye, Dongxi
    JOURNAL OF NUMBER THEORY, 2021, 222 : 38 - 47
  • [22] A Proof of Simmons' Conjecture
    Tor Helleseth
    Johannes Mykkeltveit
    Designs, Codes and Cryptography, 2004, 33 : 39 - 43
  • [23] PROOF OF THE KNOP CONJECTURE
    Losev, Ivan V.
    ANNALES DE L INSTITUT FOURIER, 2009, 59 (03) : 1105 - 1134
  • [24] PROOF OF A CONJECTURE OF KOMATU
    SILVERMAN, H
    HOUSTON JOURNAL OF MATHEMATICS, 1988, 14 (01): : 143 - 146
  • [25] PROOF OF A CONJECTURE OF WHITNEY
    MASSEY, WS
    PACIFIC JOURNAL OF MATHEMATICS, 1969, 31 (01) : 143 - &
  • [26] PROOF FOR TALBOTS CONJECTURE
    GIGUERE, JC
    RAMACHANDRAN, V
    SWAMY, MNS
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1974, AS21 (01): : 154 - 155
  • [27] A PROOF OF BOESCH CONJECTURE
    WANG, GF
    NETWORKS, 1994, 24 (05) : 277 - 284
  • [28] Proof of a conjecture on unimodality
    Wang, Y
    Yeh, YN
    EUROPEAN JOURNAL OF COMBINATORICS, 2005, 26 (05) : 617 - 627
  • [29] Proof of the BMV conjecture
    Stahl, Herbert R.
    ACTA MATHEMATICA, 2013, 211 (02) : 255 - 290
  • [30] PROOF OF WANG CONJECTURE
    YANG, YX
    CHINESE SCIENCE BULLETIN, 1990, 35 (04): : 350 - 352