A Quantitative Paradigm for Decision-Making in Precision Oncology

被引:7
|
作者
Engelhardt, Dalit [1 ,2 ,3 ,4 ]
Michor, Franziska [1 ,2 ,3 ,4 ,5 ,6 ]
机构
[1] Dana Farber Canc Inst, Dept Data Sci, Boston, MA 02115 USA
[2] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
[3] Harvard Univ, Dept Stem Cell & Regenerat Biol, Cambridge, MA 02138 USA
[4] Dana Farber Canc Inst, Ctr Canc Evolut, Boston, MA 02115 USA
[5] Broad Inst Harvard & MIT, Cambridge, MA USA
[6] Ludwig Ctr Harvard, Boston, MA USA
来源
TRENDS IN CANCER | 2021年 / 7卷 / 04期
关键词
2-STAGE RANDOMIZATION DESIGNS; HIGH-RISK NEUROBLASTOMA; OLDER PATIENTS; SURVIVAL DISTRIBUTIONS; TREATMENT STRATEGIES; TREATMENT POLICIES; THERAPY; CANCER; TRIAL; CHEMOTHERAPY;
D O I
10.1016/j.trecan.2021.01.006
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The complexity and variability of cancer progression necessitate a quantitative paradigm for therapeutic decision-making that is dynamic, personalized, and capable of identifying optimal treatment strategies for individual patients under substantial uncertainty. Here, we discuss the core components and challenges of such an approach and highlight the need for comprehensive longitudinal clinical and molecular data integration in its development. We describe the complementary and varied roles of mathematical modeling and machine learning in constructing dynamic optimal cancer treatment strategies and highlight the potential of reinforcement learning approaches in this endeavor.
引用
下载
收藏
页码:293 / 300
页数:8
相关论文
共 50 条
  • [1] DECISION-MAKING PARADIGM IN CLINICAL ONCOLOGY
    Novik, A. A.
    Ionova, T. I.
    Gorodokin, G. I.
    QUALITY OF LIFE RESEARCH, 2005, 14 (09) : 2093 - 2093
  • [2] Variant allele frequency: a decision-making tool in precision oncology?
    Bielo, Luca Boscolo
    Trapani, Dario
    Repetto, Matteo
    Crimini, Edoardo
    Valenza, Carmine
    Belli, Carmen
    Criscitiello, Carmen
    Marra, Antonio
    Subbiah, Vivek
    Curigliano, Giuseppe
    TRENDS IN CANCER, 2023, 9 (12): : 1058 - 1068
  • [3] Intricacies of human–AI interaction in dynamic decision-making for precision oncology
    Dipesh Niraula
    Kyle C. Cuneo
    Ivo D. Dinov
    Brian D. Gonzalez
    Jamalina B. Jamaluddin
    Jionghua Judy Jin
    Yi Luo
    Martha M. Matuszak
    Randall K. Ten Haken
    Alex K. Bryant
    Thomas J. Dilling
    Michael P. Dykstra
    Jessica M. Frakes
    Casey L. Liveringhouse
    Sean R. Miller
    Matthew N. Mills
    Russell F. Palm
    Samuel N. Regan
    Anupam Rishi
    Javier F. Torres-Roca
    Hsiang-Hsuan Michael Yu
    Issam El Naqa
    Nature Communications, 16 (1)
  • [4] A PARADIGM FOR ADMINISTRATIVE DECISION-MAKING
    WESTMEYER, P
    CONTEMPORARY EDUCATION, 1981, 53 (01): : 19 - 21
  • [5] THE DECISION-MAKING PROCESS IN ONCOLOGY
    HOERNI, B
    BULLETIN DU CANCER, 1991, 78 : S7 - S10
  • [6] Decision-making as discovery: Vetting clinical research in a leading precision oncology service
    Cambrosio, Alberto
    Campbell, Jonah
    Drilon, Alexander E.
    Keating, Peter
    Polk, Jess B.
    SOCIOLOGY OF HEALTH & ILLNESS, 2024, 46 (03) : 495 - 513
  • [7] Genomic expertise in action: molecular tumour boards and decision-making in precision oncology
    Bourret, Pascale
    Cambrosio, Alberto
    SOCIOLOGY OF HEALTH & ILLNESS, 2019, 41 (08) : 1568 - 1584
  • [8] ETHICS IN AGING - A DECISION-MAKING PARADIGM
    DOOLITTLE, NO
    HERRICK, CA
    EDUCATIONAL GERONTOLOGY, 1992, 18 (04) : 395 - 408
  • [9] THE DECISION-MAKING PARADIGM OF ORGANIZATIONAL DESIGN
    HUBER, GP
    MCDANIEL, RR
    MANAGEMENT SCIENCE, 1986, 32 (05) : 572 - 589
  • [10] DECISION-MAKING - NEW PARADIGM FOR EDUCATION
    WALES, CE
    NARDI, AH
    STAGER, RA
    EDUCATIONAL LEADERSHIP, 1986, 43 (08) : 37 - 41